LIS2DUX12

Datasheet

Ultralow-power 3-axis smart accelerometer with AI, antialiasing filter, and advanced digital features

LGA-12L 2.0 x 2.0 x 0.74 (max) mm

Product status link	
LIS2DUX12	

Product summary				
Order code	LIS2DUX12TR			
Temperature range [°C]	-40 to +85			
Package	LGA-12L			
Packing	Tape and reel			

Product resources

AN5909 (device application note) AN5904 (finite state machine) AN5903 (machine learning core) TN0018 (design and soldering)

Features

- Supply voltage range from 1.62 V to 3.6 V
 - Independent IO supply (1.62 V to 3.6 V) for I²C and SPI interfaces
 - Independent IO supply (extended range: 1.08 V to 3.6 V) for MIPI I3C $^{\textcircled{B}}$ interface
- Four operating power modes
- Ultralow supply current
 - High-performance mode with antialiasing filter: 9.3 μA
 - Low-power mode with antialiasing filter: 6.5 μA
 - Ultralow-power mode: 3 µA
 - Power-down: 0.012 μA
- Low noise down to 220 µg/√Hz
- ±2g/±4g/±8g/±16g programmable full-scale
- ODR from 1.6 Hz to 800 Hz
- Embedded machine learning core
- Programmable finite state machine
- Adaptive self-configuration (ASC) based on the sensor processing output (FSM / MLC)
- Embedded temperature sensor
- Embedded FIFO: up to 128 samples of accelerometer and temperature data or 256 samples of accelerometer data at low resolution
- High-speed I²C/SPI/MIPI I3C[®] digital output interface
- Embedded digital functions (free-fall, wake-up, single/double/triple-tap recognition, activity/inactivity, 6D/4D orientation)
- Advanced pedometer, step detector and step counter
- Significant motion detection, tilt detection
- Self-test

•

•

•

.

- Small package: 2.0 x 2.0 x 0.74 (max) mm LGA 12-lead
- 10000 *g* high shock survivability
- ECOPACK and RoHS compliant

Applications

- Wearable devices (wristband and smart watches)
- Game controllers
- Hearing aids and portable healthcare devices
- True wireless stereo
- Wireless sensor nodes
- Motion-activated user interfaces (screen rotation, tap, double tap)
- Asset trackers

Description

The LIS2DUX12 is a smart, digital, 3-axis linear accelerometer whose MEMS and ASIC have been expressly designed to combine the lowest supply current possible with features such as always-on antialiasing filtering, a finite state machine (FSM) and machine learning core (MLC) with adaptive self-configuration (ASC).

The FSM and MLC with ASC deliver outstanding always-on, edge processing capabilities to the LIS2DUX12. The LIS2DUX12 MIPI I3C[®] slave interface and embedded 128-level FIFO buffer complete a set of features that make this accelerometer a reference in terms of system integration from a standpoint of the bill of materials, processing, or power consumption.

The LIS2DUX12 has user-selectable full scales of $\pm 2g/\pm 4g/\pm 8g/\pm 16g$ and is capable of measuring accelerations with output data rates from 1.6 Hz to 800 Hz.

The device has a dedicated internal engine to process motion and acceleration detection including free-fall, wakeup, single/double/triple-tap recognition, activity/inactivity, and 6D/4D orientation.

The LIS2DUX12 is available in a small thin plastic, land grid array (LGA) package, and it is guaranteed to operate over an extended temperature range from -40°C to +85°C.

1 Block diagram and pin description

1.1 Block diagram

Figure 1. Block diagram

SELF TEST	REFERENCE	TRIMMING CIRCUITS	СLОСК	128 Level FIFO	CONTROL LOGIC & INTERRUPT GEN.	INT1 INT2
-----------	-----------	----------------------	-------	-------------------	--------------------------------------	--------------

1.2 Pin description

57

Table 1. Pin description

Pin#	Name	Function
1	SCL	I ² C/MIPI I3C [®] serial clock (SCL)
'	SPC	SPI serial port clock (SPC)
		SPI/I ² C/MIPI I3C [®] mode selection
2 ⁽¹⁾	CS	(1: SPI idle mode / I ² C/MIPI I3C [®] enabled;
		0: SPI enabled / I ² C/MIPI I3C [®] disabled)
3(2)	SDO	SPI serial data output (SDO)
3(2)	SA0	I ² C less significant bit of the device address (SA0)
	SDA	I ² C/MIPI I3C [®] serial data (SDA)
4 ⁽²⁾	SDI	SPI serial data input (SDI)
	SDO	3-wire interface serial data output (SDO)
5	NC	Internally not connected. Can be tied to Vdd, Vdd_IO, or GND.
6	GND	0 V supply
7		Connect to GND if not used as interrupt pin 1 ⁽³⁾
	RES/EXT_CLK	External clock for synchronization of multiple sensors ⁽⁴⁾
8	GND	0 V supply
9	Vdd	Power supply
10	Vdd_IO	Power supply for I/O pins
11 ⁽⁵⁾	INT2	Interrupt pin 2. Clock input when selected in one-shot mode
12 ⁽⁵⁾	INT1	Interrupt pin 1

1. The CS pin is internally pulled up by default. The pull-up of the CS pin can be disconnected by setting the bit CS_PU_DIS of register PIN_CTRL (0Ch) to 1.

 The internal pull-up of the SDO/SA0 and SDA/SDI/SDO pins is disconnected by default. The pull-up of the SDO/SA0 pin can be enabled by setting bit SDO_PU_EN of register PIN_CTRL (0Ch) to 1. The pull-up of the SDA/SDI/SDO pin can be enabled by setting bit SDA_PU_EN of register PIN_CTRL (0Ch) to 1.

3. When the INT1_ON_RES bit of register CTRL1 (10h) is set to 1, the interrupt signals configured on the INT1 pin are routed to the RES/EXT_CLK pin.

4. When the external clock for the synchronization of multiple sensors is intended to be used, the EXT_CLK_EN bit must be set to 1 in register EXT_CLK_CFG (08h) and the bit INT1_ON_RES set to 0 in register CTRL1 (10h) in order to correctly drive the pin.

5. The INT1 and INT2 pins are internally pulled down by default. The internal pull-down of the INT1 pin can be disconnected by setting the PD_DIS_INT1 bit in PIN_CTRL (0Ch) to 1. The internal pull-down of the INT2 pin can be disconnected by setting the PD_DIS_INT2 bit in PIN_CTRL (0Ch) to 1.

2 Mechanical and electrical specifications

2.1 Mechanical characteristics

 $@Vdd = 1.8 V, T = 25^{\circ}C$ unless otherwise noted.

The product is factory calibrated at 1.8 V. The operational power supply range is from 1.62 V to 3.6 V.

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
				±2		
FS	Magguramont range			±4		
гð	Measurement range			±8		g
				±16		
		FS = ±2 g		0.061		
0	Sensitivity ⁽²⁾	FS = ±4 <i>g</i>		0.122		mg/digit
So		FS = ±8 g		0.244		
		FS = ±16 <i>g</i>		0.488		
A		FS = ±8 g		000		
An	Noise density - high-performance mode	ODR = 800 Hz, BW = ODR/2		220		µ <i>g</i> /√Hz
TyOff	Zero-g level offset accuracy ⁽³⁾			±30		m <i>g</i>
TCO	Zero-g offset change vs. temperature			±1		mg/°C
TCS	Sensitivity change vs. temperature			±0.035		%/°C
		X-axis	50	-	700	
ST	Self-test positive difference	Y-axis	50	-	700	mg
		Z-axis	200	-	1200	

Table 2. Mechanical characteristics

1. Typical specifications are not guaranteed.

2. 16-bit format

3. Values after factory calibration test and trimming

2.2 Electrical characteristics

@Vdd = 1.8 V, T = 25°C unless otherwise noted.
The product is factory calibrated at 1.8 V. The operational power supply range is from 1.62 V to 3.6 V.

Table 3. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.62	1.8	3.6	V
		I ² C and SPI interfaces	1.62		3.6	
Vdd_IO	I/O pins supply voltage	MIPI I3C [®] interface	1.08		3.6	V
		FS = ±8 g				
IddHP	Supply surrent in high performance mode	ODR = all ODRs		9.3		
IddHP	Supply current in high-performance mode	BW = ODR/2 with antialiasing filter		9.3		μA
		Temperature sensor off ⁽²⁾				
		FS = ±8 g				
lddLP	Supply current in low-power mode	ODR = 50 Hz,		6.5		μA
IUULF		BW = ODR/2 with antialiasing filter		0.5		μΑ
		Temperature sensor off ⁽²⁾				
		FS = ±8 g				
IddULP	Supply current in ultralow-power mode	ODR = 1.6 Hz,		3		μA
IUUUULI	Supply current in unalow-power mode	BW = ODR/2		5		μΛ
		Temperature sensor off ⁽²⁾				
IddPD	Supply current in deep power-down			12		nA
V_{IH}	Digital high-level input voltage		0.7*Vdd_IO			V
VIL	Digital low-level input voltage				0.3*Vdd_IO	V
V _{OH}	Digital high-level output voltage	I _{OH} = 4 mA ⁽³⁾	Vdd_IO - 0.2			V
V _{OL}	Digital low-level output voltage	I _{OL} = 4 mA ⁽³⁾			0.2	V

1. Typical specifications are not guaranteed.

3. 4 mA is the maximum driving capability, that is, the maximum DC current that can be sourced/sunk by the digital pin in order to guarantee the correct digital output voltage levels V_{OH} and V_{OL} .

2.3 Temperature sensor characteristics

 $@Vdd = 1.8 V, T = 25^{\circ}C$ unless otherwise noted.

Table 4. Temperature sensor characteristics

Symbol	Parameter	Min.	Typ. ⁽¹⁾	Max.	Unit
Тор	Operating temperature range	-40		+85	°C
Toff	Temperature offset ⁽²⁾	-15		+15	°C
TSDr	Temperature sensor output change vs. temperature		0.045 ⁽³⁾		°C/LSB
TODR	Temperature refresh rate		ODR		Hz

1. Typical specifications are not guaranteed.

2. The output of the temperature sensor is 0 LSB (typ.) at 25°C.

3. 12-bit resolution.

^{2.} The accelerometer temperature compensation is enabled even if the temperature sensor is disabled.

2.4 Communication interface characteristics

2.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.

Table	5.	SPI	slave	timing	values
-------	----	-----	-------	--------	--------

Symbol	Parameter		Value ⁽¹⁾			
Symbol		Min	Тур	Max	Unit	
f _{c(SPC)}	SPI clock frequency			10	MHz	
t _{c(SPC)}	SPI clock period	100				
t _{high(SPC)}	SPI clock high	45				
t _{low(SPC)}	SPI clock low	45				
t	CS setup time (mode 3)	5			ns	
t _{su(CS)}	CS setup time (mode 0)	20				
t _{h(CS)}	CS hold time (mode 3)	20				
In(CS)	CS hold time (mode 0)	20				
t _{su(SI)}	SDI input setup time	7				
t _{h(SI)}	SDI input hold time	15				
t _{v(SO)}	SDO valid output time		15	25		
t _{dis(SO)}	SDO output disable time			50		
Cload	Bus capacitance			100	pF	

1. Values are evaluated at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production

Figure 3. SPI slave timing in mode 0

2.4.2 I²C - inter-IC control interface

Subject to general operating conditions for Vdd and Top.

Table 6.	I ² C slave	timing	values
----------	------------------------	--------	--------

Symbol	Parameter	I ² C fast	mode ⁽¹⁾⁽²⁾	I ² C fast mo	de plus ⁽¹⁾⁽²⁾	Unit	
Symbol	Parameter	Min	Max	Min	Max		
f _(SCL)	SCL clock frequency	0	400	0	1000	kHz	
t _{w(SCLL)}	SCL clock low time	1.3		0.5			
t _{w(SCLH)}	SCL clock high time	0.6		0.285		μs	
t _{su(SDA)}	SDA setup time	100		50		ns	
t _{h(SDA)}	SDA data hold time	0	0.9	0			
t _{h(ST)}	START/REPEATED START condition hold time	0.6		0.26			
t _{su(SR)}	REPEATED START condition setup time	0.6		0.26			
t _{su(SP)}	STOP condition setup time	0.6		0.26		μs	
t _{w(SP:SR)}	Bus free time between STOP and START condition	1.3		0.5			
	Data valid time		0.9		0.45		
	Data valid acknowledge time		0.9		0.45		
CB	Capacitive load for each bus line		400		550	pF	

1. Data based on standard I²C protocol requirement, not tested in production.

2. Data for I²C fast mode and I²C fast mode plus have been validated by characterization, not tested in production.

Figure 5. I²C slave timing diagram

Note: Measurement points are done at 0.3·Vdd_IO and 0.7·Vdd_IO for both ports.

2.5 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to +4.3	V
Vdd_IO	I/O pins supply voltage	-0.3 to +4.3	V
Vin	Input voltage on any control pin (CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)	-0.3 to Vdd_IO +0.3	V
A _{UNP}	Acceleration (any axis, unpowered)	3000 <i>g</i> for 0.5 ms	g
TUNP	Acceleration (any axis, unpowered)	10000 <i>g</i> for 0.2 ms	g
T _{OP}	Operating temperature range	-40 to +85	°C
T _{STG}	Storage temperature range	-40 to +125	°C
ESD	Electrostatic discharge protection	2 (HBM)	kV

Table 7. Absolute maximum ratings

Note: Supply voltage on any pin should never exceed 4.3 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

2.6 Terminology

2.6.1 Sensitivity

Sensitivity describes the gain of the sensor and can be determined by applying 1 *g* acceleration to it. As the sensor can measure DC accelerations this can be done easily by pointing the axis of interest towards the center of the Earth, noting the output value, rotating the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing so, ± 1 *g* acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and time. The sensitivity tolerance describes the range of sensitivities of a large population of sensors.

2.6.2 Zero-g level offset

Zero-*g* level offset describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface measures 0 *g* on the X-axis and 0 *g* on the Y-axis whereas the Z-axis measures 1 *g*. The output is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as two's complement number). A deviation from ideal value in this case is called zero-*g* level offset. Offset is to some extent a result of stress to the MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Zero-*g* level offset change vs. temperature".

3 Functionality

3.1 Operating modes

The LIS2DUX12 has four operating modes: high-performance, low-power, ultralow-power, and one-shot mode. In low-power mode, an aggressive antialiasing filter is active, but the overall supply current remains extraordinarily low (refer to Table 3).

3.2 One-shot modes

The device features two one-shot modes: one-shot triggered by the INT2 pin, and one-shot triggered by the I²C/SPI/I3C digital interface.

3.3 Power-up sequence

When Vdd and Vdd_IO are set, the device enters a deep power-down state: this is an ultralow current condition in which the device is powered but with a very aggressive trade-off in supply current.

In order to wake up the device, the first step is to perform a power-up command bringing the device into a soft power-down state: the device is now ready to be configured and generate data.

The LIS2DUX12 offers four different operating modes able to generate accelerometer and temperature data: high-performance mode, low-power mode, ultralow-power mode, and one-shot mode.

Figure 6. Power-up sequence

3.3.1 Power-up command

The power-up command allows the LIS2DUX12 to transition from deep power-down to soft power-down. It differs if either the I²C/I3C interface or the SPI interface is used. See Section 6 for more details on the digital interfaces.

3.3.1.1 I²C/I3C interfaces

If the I²C or I3C interfaces are used, the following sequence should be provided to the device:

ST/SR+ STATIC ADDRESS+R/W (both R and W sequences are supported)

The device generates a NACK and starts power-up. The operation takes 25 ms (maximum) and once completed LIS2DUX12 is in the SOFT_PD state. It is possible to verify the correct transition in the soft power-down state providing again the power-up command (ST/SR+ STATIC ADDRESS+R/W) and checking the ACK generation from the device.

To guarantee the current execution of the power-up command, the I²C/I3C master should operate at open-drain speed using I²C fast mode plus reference timing.

In the LIS2DUX12, if the bus is at 1.2 V (supported only for I3C) and the device is in power-down, the power-up sequence can be performed in I^2C fast mode plus.

If the I3C interface is used, a dynamic address should be assigned before starting device configuration. Once the DAA procedure is performed, the dynamic address is stored inside the device and it is maintained if the device returns to the deep power-down state. In this event, no other DAA procedures are needed and the power-up commands can be executed directly using the dynamic address.

3.3.1.2 SPI interface

If the SPI interface is used, the LIS2DUX12 can move from deep power-down to soft power-down by writing the bit SOFT_PD of EN_DEVICE_CONFIG (3Eh) to 1. The device starts the power-up and this operation takes 25 ms (maximum). In order to verify that device has correctly completed the transition to soft power-down, the who_am_I value (expected to be equal to 47h) can be checked by reading register WHO_AM_I (0Fh).

Note: When the power-up command is performed using the SPI interface, the I²C and the I3C interfaces are automatically disabled as soon as the device exits deep power-down condition. They are automatically reenabled after a deep power-off command is executed.

3.3.2 Soft power-off command

When the LIS2DUX12 is configured in one of the four operating modes, it is possible to switch to the soft powerdown condition, writing the ODR[3:0] bits in register CTRL5 (14h) to 0000.

3.3.3 Deep power-off command

When device is in soft power-down or it is configured in one of the four operating modes, it is possible to switch to the deep power-down condition, writing the bit DEEP_PD in register SLEEP (3Dh) to 1. When a transition to deep power-down occurs, all the registers are reset to their default value and a new power-up command and device configuration need to be done.

3.4 Accelerometer filtering chain

The accelerometer sampling chain is represented by a cascade of three main blocks: an analog antialiasing lowpass filter, an ADC converter, and a digital low-pass filter (LPF1).

Figure 7 shows the accelerometer sampling chain. The analog signal coming from the mechanical parts is filtered by an analog antialiasing low-pass filter before being converted by the ADC.

Figure 7. Accelerometer filtering chain

(1) The "Advanced functions" block refers to the pedometer, step detector and step counter, significant motion, and tilt functions; it also includes the finite state machine and the machine learning core.

The analog antialiasing filter is enabled in continuous conversion high-performance mode and low-power mode only. It is disabled in continuous conversion ultralow-power mode and in one-shot mode.

The digital LPF1 filter provides different cutoff values based on the accelerometer mode selected: continuous conversion or one-shot.

For all the details on the available configuration, refer to the application note AN5909 on www.st.com.

3.5 Interrupt event recognition

The device may be configured to generate interrupt signals coming from an independent inertial wake-up/free-fall event or from the position of the device itself. The thresholds and timing of this interrupt generator are programmable by the end user in runtime.

Automatic programmable sleep-to-wake-up and return-to-sleep functions are also available for enhanced power saving.

The device interrupts signal can behave as:

- Free-fall: 3-axis underthreshold recognition
- Wake-up: axis recognition
- Wake-to-sleep: change of state recognition active-sleep (also known as activity-inactivity)
- 6D and 4D orientation detection: change of position recognition
- Tap-tap: single/double/triple-tap detection

All these functions are parallel, but during sleep, it is not possible to recognize a tap-tap event. All these signals can be driven to the two interrupt pins (INT1 and INT2) through registers MD1_CFG (1Fh) and MD2_CFG (20h). All these functions are enabled by setting the INTERRUPTS_ENABLE bit in register INTERRUPT_CFG (17h) to 1.

It is possible to configure the duration of the interrupt using the LIR bit in INTERRUPT_CFG (17h) as shown in the following table.

Table 8. Configuration of duration of interrupt

LIR	Interrupt type
0	Level mode
1	Latched mode

- Interrupt level mode: the interrupt signal goes high when an interrupt event occurs and is reset when the
 acceleration data fall below the threshold.
- Interrupt latched mode: the interrupt signal on the INT1/INT2 pins is the OR of the interrupt flags enabled through the MD1_CFG (1Fh) and MD2_CFG (20h) registers. Each interrupt flag goes to 1 when an interrupt event occurs and is reset when the dedicated source register is read. The interrupt generator block is inhibited 1 ODR after the reset event. It is possible to reset all the interrupt flags simultaneously by reading the ALL_INT_SRC (24h) register.

3.6 Accelerometer self-test

Self-test mode allows checking the functionality of the sensor without moving it, applying an actuation force to the sensor, and simulating a definite input acceleration.

The procedures for the positive and negative self-test are described in the device application note AN5909.

3.7 Temperature sensor

The temperature is available in OUT_T_L (2Eh), OUT_T_H (2Fh) stored as two's complement data, left-justified in 12-bit mode.

Refer to Table 4. Temperature sensor characteristics for the conversion factor.

4 Application hints

Figure 8. LIS2DUX12 electrical connections (top view)

The device core is supplied through the Vdd line while the I/O pins are supplied through the Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 μ F aluminum) should be placed as near as possible to pin 9 of the device (common design practice).

All the voltage and ground supplies must be present at the same time to have proper behavior of the IC (refer to Figure 8). It is possible to remove Vdd while maintaining Vdd_IO without blocking the communication bus, in this condition the measurement chain is powered off.

The functionality of the device and the measured acceleration data are selectable and accessible through the $I^2C/MIPI I3C^{\textcircled{B}}$ or SPI interfaces. When using the I^2C , CS must be tied high (that is, connected to Vdd_IO).

The functions, the threshold and the timing of the two interrupt pins (INT1 and INT2) can be completely programmed by the user through the I²C/MIPI I3C[®]/SPI interface.

Table 9. Internal pin status

Pin #	Name	Function	Pin status			
1	SCL	I ² C/MIPI I3C [®] serial clock (SCL)	Default: input without pull-up			
	SPC	SPI serial port clock (SPC)				
		SPI/I ² C/MIPI I3C [®] mode selection				
2	CS	1: SPI idle mode / I²C/MIPI I3C [®] enabled	Default: input with internal pull-up			
		0: SPI enabled / I ² C/MIPI I3C [®] disabled				
3	SDO	Serial data output (SDO)	Default: input without internal pull-up			
5	SA0	I ² C less significant bit of the device address (SA0)	Delauit. Input without internal pull-up			
	SDA	I ² C/MIPI I3C [®] serial data (SDA)				
4	SDI	SPI serial data input (SDI)	Default: (SDA) input without internal pull-up			
	SDO	3-wire interface serial data output (SDO)				
5	NC	Internally not connected. Can be tied to Vdd, Vdd_IO, or GND.				
6	GND	0 V supply				
7	RES/EXT_CLK	Connect to GND if not used as interrupt pin 1 ⁽¹⁾				
/	RES/EXT_OLK	External clock for synchronization of multiple $\ensuremath{sensors}^{(2)}$				
8	GND	0 V supply				
9	Vdd	Power supply				
10	Vdd_IO	Power supply for I/O pins				
11	INT2	Interrupt pin 2. Clock input when selected in one-shot mode.	Default: input with internal pull-down ⁽³⁾⁽⁴⁾			
12	INT1	Interrupt pin 1	Default: input with internal pull-down ⁽⁵⁾⁽⁶⁾			

1. When the INT1_ON_RES bit of register CTRL1 (10h) is set to 1, the interrupt signals configured on the INT1 pin are routed to the RES/EXT_CLK pin.

2. When the external clock for the synchronization of multiple sensors is intended to be used, the EXT_CLK_EN bit must be set to 1 in register EXT_CLK_CFG (08h) and the bit INT1_ON_RES set to 0 in register CTRL1 (10h) in order to correctly drive the pin.

3. The internal pull-down can be disconnected by setting the PD_DIS_INT2 bit of register PIN_CTRL (0Ch) to 1. When this is done, the INT2 pin needs to be externally biased.

4. The INT2 pin is configured as "push-pull output forced to GND" (and the internal pull-down disabled) as soon as it is configured with the interrupt configuration bits in the CTRL3 (12h), MD2_CFG (20h), EMB_FUNC_INT2 (0Eh), FSM_INT2 (0Fh), and MLC_INT2 (11h) registers.

5. The internal pull-down can be disconnected by setting the PD_DIS_INT1 bit of register PIN_CTRL (0Ch) to 1. When this is done, the INT1 pin needs to be externally biased.

 The INT1 pin is configured as "push-pull output forced to GND" (and the internal pull-down disabled) as soon as it is configured with the interrupt configuration bits in the CTRL2 (11h), MD1_CFG (1Fh), EMB_FUNC_INT1 (0Ah), FSM_INT1 (0Bh), and MLC_INT1 (0Dh) registers.

5 Digital main blocks and embedded low-power features

The LIS2DUX12 has been designed to be fully compliant with Android, featuring the following on-chip functions:

- FIFO data buffering
 - 100% efficiency with flexible configurations and partitioning
 - Possibility to store timestamp
- Event-detection interrupts (fully configurable)
 - Free-fall
 - Wake-up
 - 6D/4D orientation
 - Single/double/triple-tap detection
 - Activity/inactivity recognition
 - Stationary/motion detection
- Specific IP blocks (called "embedded functions") with negligible power consumption and high-performance
 - Pedometer functions: step detector and step counters
 - Tilt
 - Significant motion detection
 - Finite state machine (FSM)
 - Machine learning core (MLC) with exportable features and filters for AI applications
 - Adaptive self-configuration (ASC)

5.1 FIFO

The LIS2DUX12 embeds 128 slots of 7 bytes each (1 byte TAG + 6 bytes DATA). This allows consistent power saving for the system, since the host processor does not need to continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO.

FIFO is designed in order to allow the batching of different kinds of sensors. It is possible to store in FIFO the data of the accelerometer and temperature physical sensors along with the data of virtual sensors like the step counter, the MLC features / filters / results and FSM results.

The reconstruction of a FIFO stream is a simple task thanks to the FIFO_DATA_OUT_TAG byte that allows recognizing the meaning of a word in FIFO.

The applications have maximum flexibility in choosing the rate of batching for physical sensors with FIFO dedicated configurations.

FIFO allows correctly reconstructing the timestamp information for each sensor stored in FIFO. Also, if a change in the ODR or BDR (batch data rate) configuration is performed, the application can correctly reconstruct the timestamp and know exactly when the change was applied in a FIFO stream without disabling FIFO batching. FIFO stores information of the new configuration and timestamp in which the change was applied in the device.

In order to maximize the amount of data collected in FIFO, it is possible to double the slots of FIFO data (from 128 to 256) by writing the FIFO_DEPTH bit to 1 in FIFO_CTRL (15h) with 2x depth mode. When this mode is enabled, the most significant 8 bits for each acceleration data are stored in FIFO. Each FIFO data word contains data of two consecutive ODRs, the actual and the previous one.

In high-resolution batch mode, accelerometer and temperature data are stored in FIFO in 12-bit format at the ODR rate.

In 2x depth batch mode, each FIFO word contains two accelerometer data in 8-bit format at the ODR/2 rate. It is possible to avoid storing the temperature data in FIFO by setting the XL_ONLY_FIFO bit in FIFO_WTM (16h) register to 1. In this case, the accelerometer data are stored in FIFO in 16-bit format at the ODR rate.

The FIFO buffer can work according to six different modes:

- Bypass mode
- FIFO mode
- Continuous mode
- Continuous-to-FIFO mode
- Bypass-to-continuous
- Bypass-to-FIFO

Each mode is selected by the FIFO_MODE[2:0] bits in the FIFO_CTRL (15h) register. A programmable FIFO watermark is selected in the FIFO_WTM (16h) register.

FIFO status is available in the FIFO_STATUS1 (26h) and FIFO_STATUS2 (27h) registers and can be used to generate dedicated interrupts on the INT1 and INT2 pins using the CTRL2 (11h) and CTRL3 (12h) registers.

The FIFO_WTM_IA bit in the FIFO_STATUS1 (26h) register goes to 1 when the number of unread samples is greater than or equal to FTH[6:0] in FIFO_WTM (16h).

The FIFO_OVR_IA bit in FIFO_STATUS1 (26h) is equal to 1 if a FIFO sample is overwritten.

FSS[7:0] in FIFO_STATUS2 (27h) contains stored data levels of unread samples.

When FSS[7:0] is equal to 00000000, FIFO is empty. When FSS[7:0] is equal to 10000000, FIFO is full and the unread samples are 128.

5.1.1 Bypass mode

In bypass mode FIFO_CTRL (15h) (FIFO_MODE[2:0] = 000), the FIFO is not operational, the buffer content is cleared, and no data is collected in FIFO memory, which remains empty with only the actual sample available in the output registers.

Bypass mode is also used to reset the FIFO when in FIFO mode.

5.1.2 FIFO mode

In FIFO mode FIFO_CTRL (15h) (FIFO_MODE[2:0] = 001) data from the output channels are stored in the FIFO memory until it is full. When 128 unread samples are stored in memory, data collecting is stopped until FIFO mode is restarted.

To reset FIFO content, bypass mode should be selected by writing FIFO_CTRL (15h) (FIFO_MODE[2:0]) to 000. After this reset command, it is possible to restart FIFO mode, writing FIFO_CTRL (15h) (FIFO_MODE[2:0]) to 001.

5.1.3 Continuous mode

Continuous mode FIFO_CTRL (15h) (FIFO_MODE[2:0] = 110) provides a continuous FIFO update: when 128 unread samples are stored in memory, as new data arrives, the oldest data is discarded and overwritten by the newer.

A FIFO threshold flag FIFO_WTM_IA bit in FIFO_STATUS1 (26h) is asserted when the number of unread samples in FIFO is greater than or equal to FTH[6:0] in FIFO_WTM (16h).

It is possible to route the FIFO_WTM_IA bit to the INT1 pin by writing the INT1_FIFO_TH bit to 1 in register CTRL2 (11h) or to the INT2 pin by writing the INT2_FIFO_TH bit to 1 in register CTRL3 (12h).

If an overrun occurs, the oldest sample in FIFO is overwritten and the FIFO_OVR_IA flag in FIFO_STATUS1 (26h) is asserted.

5.1.4 Continuous-to-FIFO mode

In continuous-to-FIFO mode FIFO_MODE[2:0] = 011 in the FIFO_CTRL (15h) register, FIFO operates in continuous mode and FIFO mode starts upon an edge trigger event. When the FIFO is full, data collecting is stopped. The trigger event could be single/double/triple-tap, wake-up, free-fall, 6D interrupt or any combination of these events, but every interrupt has to be routed to the corresponding pin to be used as a trigger.

5.1.5 Bypass-to-continuous mode

In bypass-to-continuous mode FIFO_CTRL (15h) (FIFO_MODE[2:0] = 100), data measurement storage inside FIFO starts in continuous mode upon an edge trigger event.

The trigger event could be single/double/triple-tap, wake-up, free-fall, 6D interrupt or any combination of these events, but every interrupt has to be routed to the corresponding pin to be used as a trigger. The sample that generated the trigger is available in FIFO.

5.1.6 Bypass-to-FIFO

In bypass-to-FIFO mode FIFO_CTRL (15h)(FIFO_MODE_[2:0] = 111), data measurement storage inside FIFO operates in FIFO mode when selected triggers are equal to 1, otherwise FIFO content is reset (bypass mode). The trigger event could be single/double/triple-tap, wake-up, free-fall, 6D interrupt or any combination of these events, but every interrupt has to be routed to the corresponding pin to be used as a trigger. The sample that generated the trigger is available in FIFO.

5.1.7 FIFO reading procedure

When FIFO is enabled and the mode is different from bypass, reading the FIFO output registers return the oldest FIFO sample set. Whenever these registers are read, their content is moved to the SPI/I²C/MIPI I3C[®] output buffer.

The data stored in FIFO are accessible from dedicated registers and each FIFO word is composed of 7 bytes: one tag byte (FIFO_DATA_OUT_TAG (40h), in order to identify the sensor, and 6 bytes of fixed data (FIFO_DATA_OUT registers from (41h) to (46h)).

The FSS[7:0] field in the FIFO_STATUS2 (27h) registers contains the number of words (1 byte TAG + 6 bytes DATA) collected in FIFO.

Meta information about accelerometer configuration changes can be managed by enabling the CFG_CHG_EN bit in FIFO_CTRL (15h).

The entire FIFO content is retrieved by performing a certain number of read operations from the FIFO output registers until the buffer becomes empty (FSS[7:0] bits of the FIFO_STATUS2 (27h) register are equal to 0). FIFO output data must be read with multiples of 7-byte reads starting from the FIFO_DATA_OUT_TAG (40h) register.

The rounding function (automatic wraparound) from address FIFO_DATA_OUT_Z_L (45h) and FIFO_DATA_OUT_Z_H (46h) to FIFO_DATA_OUT_TAG (40h) is done automatically in the device, in order to allow reading many words with a unique multiple read operation.

The recommended way to retrieve data from the FIFO is the following:

- 1. Read the FIFO_STATUS2 (27h) register to check how many words are stored in the FIFO. This information is contained in the FSS[7:0] bits.
- 2. For each word in FIFO, read the FIFO word (tag and output data) and interpret it on the basis of the FIFO tag.
- 3. Go to step 1.

5.1.8 FIFO empty condition

When FIFO is emptied, a dedicated FIFO tag value (equal to 00000) is used in order to recognize an empty condition and no duplicated samples are read. If samples are continuously read before a new sample arrives, the FIFO tag value continues to be equal to 00000.

5.2 Activity/inactivity, Android stationary/motion detection functions

The activity/inactivity function recognizes the device's sleep state and allows reducing system power consumption.

When the activity/inactivity function is activated by setting the SLEEP_ON bit in WAKE_UP_THS (1Ch), the device automatically goes to the inactivity output data rate selected by the INACT_ODR[1:0] bits in register CTRL4 (13h).

With this feature the system may be efficiently switched from low-power mode to full performance depending on user-selectable positioning and acceleration events, thus ensuring power saving and flexibility.

The Android stationary/motion detection function only recognizes the device's sleep state.

When the Android stationary/motion detection function is activated by setting to a stationary condition the INACT_ODR[1:0] bits in register CTRL4 (13h), the device detects acceleration below a fixed threshold but does not change the ODR after sleep state detection.

The activity/inactivity recognition and Android stationary/motion detection functions are activated by writing the desired threshold in the WAKE_UP_THS (1Ch) register. The high-pass filter is automatically enabled.

If the device is in sleep (inactivity/stationary) mode, when at least one of the axes exceeds the threshold in WAKE_UP_THS (1Ch), the device goes into a sleep-to-wake state (as wake-up).

For the activity/inactivity function, the device, in a wake-up state, returns to the ODR before sleep state detection. Activity/inactivity, Android stationary/motion detection threshold and duration can be configured in the following control registers:

WAKE_UP_THS (1Ch) WAKE_UP_DUR (1Dh)

5.3 Pedometer functions: step detector and step counters

The LIS2DUX12 embeds an advanced pedometer with an algorithm running in an ultralow-power domain in order to ensure extensive battery life in battery-constrained applications.

Leveraging on enhanced configurability, the advanced embedded pedometer is suitable for a large range of applications from mobile to wearable devices.

The algorithm processes and analyzes the accelerometer waveform in order to count the user's steps during walking and running activities.

The pedometer works at 25 Hz and it is not affected by the selected device power mode (ultralow-power, low-power, high-performance), thus guaranteeing an ultralow-power experience and extreme flexibility in conjunction with other device functionalities.

The accelerometer operating mode can be changed at runtime and is based on user requirements without impacting the performance of the pedometer.

The pedometer output can be batched in the device's FIFO buffer, in order to decrease overall system supply current.

ST freely provides the support and the tools for easily configuring the device and tuning the algorithm configuration for a best-in-class user experience.

5.4 Pedometer algorithm

The pedometer algorithm is composed of a cascade of four stages:

- 1. Computation of the acceleration magnitude signal in order to detect the signal independently from device orientation;
- 2. FIR filter to extract relevant frequency components and to smooth the signal by cutting off high frequencies;
- 3. Peak detector to find the maximum and minimum of the waveform and compute the peak-to-peak value;
- 4. Step count: if the peak-to-peak value is greater than the settled threshold, a step is counted.

Figure 9. Four-stage pedometer algorithm

The LIS2DUX12 embeds a dynamic internal threshold for step detection that is updated after each peak-to-peak evaluation: the internal threshold is increased with a configurable speed if a step is detected or decreased with a configurable speed if a step is not detected.

This approach ensures high accuracy when the user starts to walk and a false peak rejection when the user is walking or running.

An internal configurable debounce algorithm can be also set to filter false walks: indeed, an accelerometer pattern is recognized as a walk or run only if a minimum number of steps are counted.

The LIS2DUX12 has been designed to reject a false-positive signal inside the algorithm core.

On top of the mechanisms detailed above, the LIS2DUX12 allows enabling and configuring a dedicated falsepositive rejection block to further boost pedometer accuracy.

5.5 Tilt detection

The tilt function helps to detect activity change and has been implemented in hardware using only the accelerometer to achieve targets of both ultralow power consumption and robustness during the short duration of dynamic accelerations.

The tilt function is based on a trigger of an event each time the device's tilt changes and can be used with different scenarios, for example:

- Triggers when the phone is in a front pants pocket and the user goes from sitting to standing or standing to sitting;
- Does not trigger when the phone is in a front pants pocket and the user is walking, running, or going upstairs.

5.6 Significant motion detection

The significant motion detection (SMD) function generates an interrupt when a 'significant motion', that could be due to a change in user location, is detected. In the LIS2DUX12 device this function has been implemented in hardware using only the accelerometer.

SMD functionality can be used in location-based applications in order to receive a notification indicating when the user is changing location.

5.7 Finite state machine

The LIS2DUX12 can be configured to generate interrupt signals activated by user-defined motion patterns. To do this, up to 8 embedded finite state machines can be programmed independently for motion detection such as glance gestures, absolute wrist tilt, shake and double-shake detection.

Definition of finite state machine

A state machine is a mathematical abstraction used to design logic connections. It is a behavioral model composed of a finite number of states and transitions between states, similar to a flow chart in which one can inspect the way logic runs when certain conditions are met. The state machine begins with a start state, goes to different states through transitions dependent on the inputs, and can finally end in a specific state (called stop state). The current state is determined by the past states of the system. The following figure shows a generic state machine.

Figure 10. Generic state machine

Finite state machine in the LIS2DUX12

LIS2DUX12 accelerometer data can be used as input of up to 8 programs in the embedded finite state machine (FSM). The embedded temperature sensor data can also be processed by FSM logic (Figure 11. State machine in the LIS2DUX12).

All 8 finite state machines are independent: each one has its dedicated memory area and it is independently executed. An interrupt is generated when the end state is reached or when some specific command is performed.

Figure 11. State machine in the LIS2DUX12

5.8 Machine learning core

The LIS2DUX12 embeds a dedicated core for machine learning processing that provides system flexibility, allowing some algorithms run in the application processor to be moved to the MEMS sensor with the advantage of consistent reduction in power consumption.

Machine learning core logic allows identifying if a data pattern matches a user-defined set of classes. Typical examples of applications could be activity detection like running, walking, driving, and so on.

The LIS2DUX12 machine learning core works on data patterns coming from the accelerometer sensor, but it is also possible to process the embedded temperature sensor data.

The input data can be filtered using a dedicated configurable computation block containing filters and features computed in a fixed time window defined by the user. Computed feature values and filtered data values can also be read through the FIFO buffer.

Machine learning processing is based on logical processing composed of a series of configurable nodes characterized by "if-then-else" conditions where the "feature" values are evaluated against defined thresholds.

Figure 12. Machine learning core in the LIS2DUX12

The LIS2DUX12 can be configured to run up to 4 decision trees simultaneously and independently and every decision tree can generate up to 16 results. The total number of nodes can be up to 128.

The results of the machine learning processing are available in dedicated output registers readable from the application processor at any time.

The LIS2DUX12 machine learning core can be configured to generate an interrupt when a change in the result occurs.

5.9 Adaptive self-configuration (ASC)

The LIS2DUX12 supports the adaptive self-configuration (ASC) feature, which allows the FSM to automatically reconfigure the device in real time based on the detection of a specific motion pattern or based on the output of a specific decision tree configured in the MLC, without any intervention from the host processor. The FSM can write a subset of the device registers using the SETR command, which allows indicating the register address and the new value to be written in such a register. The access to these device registers is mutually exclusive with respect to the host.

6 Digital interfaces

The registers embedded inside the LIS2DUX12 may be accessed through both the I²C, MIPI I3C[®] and SPI serial interfaces. The latter may be software configured to operate either in 3-wire or 4-wire interface mode.

The serial interfaces are mapped to the same pins. To select/exploit the I²C/MIPI I3C[®] interface, the CS line must be tied high (that is, connected to Vdd_IO).

Pin name	Pin description
	SPI/I ² C/MIPI I3C [®] mode selection
CS	1: SPI idle mode / I ² C/MIPI I3C [®] enabled
	0: SPI enabled / I ² C/MIPI I3C [®] disabled
SCL	I ² C/MIPI I3C [®] serial clock (SCL)
SPC	SPI serial port clock (SPC)
SDA	I ² C/MIPI I3C [®] serial data (SDA)
SDI	SPI serial data input (SDI)
SDO	3-wire interface serial data output (SDO)
SA0	I ² C address selection (SA0)
SDO	SPI serial data output (SDO)

Table 10. Serial interface pin description

6.1 I²C serial interface

The LIS2DUX12 I²C is a bus slave. The I²C is employed to write data into registers whose content can also be read back.

The relevant I²C terminology is given in the table below.

Table 11. I²C terminology

Term	Description
Transmitter	The device that sends data to the bus
Receiver	The device that receives data from the bus
Master	The device that initiates a transfer, generates clock signals, and terminates a transfer
Slave	The device addressed by the master

There are two signals associated with the I²C bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both lines must be connected to Vdd_IO through an external pull-up resistor. When the bus is free, both the lines are high. The I²C interface supports fast mode (400 kHz) and fast mode plus (1000 kHz) I²C standards as well as normal mode.

6.1.1 I²C operation

The transaction on the bus is started through a start (ST) signal. A start condition is defined as a high to low transition on the data line while the SCL line is held high. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The slave address (SAD) associated to the LIS2DUX12 is 001100xb where the x bit is modified by the SA0/SDO pin in order to modify the device address. If the SA0/SDO pin is connected to the supply voltage, the address is 0011001b, otherwise if the SA0/SDO pin is connected to ground, the address is 0011000b. This solution permits to connect and address two different accelerometers to the same I²C lines.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line low so that it remains stable low during the high period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded inside the LIS2DUX12 behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent. Once a slave acknowledge (SAK) has been returned, an 8-bit subaddress (SUB) is transmitted: the 7 LSb represents the actual register address while the CTRL1 (10h) (IF_ADD_INC) bit defines the address increment.

The slave address is completed with a read/write bit. If the bit is 1 (read), a repeated start (SR) condition must be issued after the two subaddress bytes. If the bit is 0 (write) the master transmits to the slave with direction unchanged. Table 12 explains how the SAD+read/write bit pattern is composed, listing all the possible configurations.

Table 12. SAD+read/write patterns

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W
Read	001100	0	1	00110001 (31h)
Write	001100	0	0	00110000 (30h)
Read	001100	1	1	00110011 (33h)
Write	001100	1	0	00110010 (32h)

Table 13. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 14. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Table 15. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 16. Transfer when master is receiving (reading) multiple bytes of data from slave

Master	ST	SAD+ W		SUB		SR	SAD+ R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DATA		DATA		

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit (MSb) first. If a slave receiver doesn't acknowledge the slave address (that is, it is not able to receive because it is performing some real-time function) the data line must be left high by the slave. The master can then abort the transfer. A low to high transition on the SDA line while the SCL line is high is defined as a stop condition. Each data transfer must be terminated by the generation of a stop (SP) condition.

In the presented communication format MAK is master acknowledge and NMAK is no master acknowledge.

6.2 SPI bus interface

The LIS2DUX12 SPI is a bus slave. The SPI allows writing to and reading from the registers of the device. The serial interface interacts with the application using 4 wires: **CS**, **SPC**, **SDI** and **SDO**.

Figure 13. Read and write protocol

CS enables the serial port and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are respectively the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of **CS**.

bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip drives SDO at the start of bit 8.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands additional blocks of 8 clock periods are added. When the CTRL1 (10h) (IF_ADD_INC) bit is 0, the address used to read/write data remains the same for every block. When the CTRL1 (10h) (IF_ADD_INC) bit is 1, the address used to read/write data is increased at every block.

The function and the behavior of SDI and SDO remain unchanged.

6.2.1 SPI read

The SPI read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

bit 16-... : data DO(...-8). Additional data in multiple byte reads.

Figure 15. Multiple byte SPI read protocol (2-byte example)

6.2.2 SPI write

Figure 16. SPI write protocol

The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: WRITE bit. The value is 0.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).

bit 16-... : data DI(...-8). Additional data in multiple byte writes.

Figure 17. Multiple byte SPI write protocol (2-byte example)

6.2.3 SPI read in 3-wire mode

3-wire mode is entered by setting the PIN_CTRL (0Ch) (SIM) bit equal to 1 (SPI serial interface mode selection).

The SPI read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

A multiple read command is also available in 3-wire mode.

6.3 MIPI I3C[®] interface

6.3.1 MIPI I3C[®] slave interface

The LIS2DUX12 interface includes a MIPI I3C[®] SDR-only slave interface able to work up to 12.5 MHz of the SCL frequency (compliant with release v1.1 of the specification) with MIPI I3C[®] SDR embedded features:

- CCC command
- Direct CCC communication (SET and GET)
- Broadcast CCC communication
- Private communications
- Private read and write for single byte
- Multiple read and write
- In-band interrupt request
- Slave reset pattern for reset
- Error detection and recovery (S0 S6)
- Group address

6.3.2 MIPI I3C[®] CCC supported commands

The list of MIPI I3C[®] CCC commands supported by the device is detailed in the following table.

Command	Command code	Default	Description
ENTDAA	0x07		DAA procedure
SETDASA	0x87		Assign dynamic address using static address.
SETDASA	0.07		Static address values are 0x18 / 0x19 depending on SDO pin.
ENEC	0x80 / 0x00		Slave activity control (direct and broadcast)
DISEC	0x81/ 0x01		Slave activity control (direct and broadcast)
ENTAS0	0x82 / 0x02		Enter activity state (direct and broadcast)
RSTDAA	0x86 ⁽¹⁾ / 0x06		Reset the assigned dynamic address (direct ⁽¹⁾ and broadcast)
SETMWL	0x89 / 0x08		Define maximum write length during private write (direct and broadcast)
SETMRL	0x8A / 0x09		Define maximum read length during private read (direct and broadcast)
SETNEWDA	0x88		Change dynamic address
		0x00	
GETMWL	0x8B	0x08	Get maximum write length during private write
		(2 byte)	
		0x00	
GETMRL	0x8C	0x10	Get maximum read length during private read
OLIMINE	0,000	0x08	Get maximum read length during private read
		(3 byte)	
		0x02	
		0x08	
		0x00	SDO = 1
		0x47	
		0x92	
GETPID	0x8D	0x0B	
		0x02	
		0x08	
		0x00 0x47	SDO = 0
		0x47 0x12	
		0x12 0x0B	
		0x0E	
GETBCR	0x8E	(1 byte)	Bus characteristics register
GETDCR	0x8F	0x41 default	MIPI I3C [®] device characteristics register
		0x00	-
GETSTATUS	0x90	0x00	Status register
		(2 byte)	
		0x08	
GETMXDS	0x94	0x60	Return max data speed
		(2 byte)	
SETGRPA	0x9B		Group address assignment

Table 17. MIPI I3C[®] CCC commands

Command	Command code	Default	Description			
RSTGRPA	0x2C / 0x9C		Reset the group address			
RSTACT	0x9A / 0x2A ⁽²⁾		Configure slave reset action			
		0x00				
GETCAPS	0x95	0x11	Provide information about device capabilities and supported extended features			
GLICAP3	0,95	0x18	Provide information about device capabilities and supported extended reatures			
		0x00				

1. Direct RSTDAA can be disabled by writing bit DIS_DRSTDAA in I3C_IF_CTRL (33h) to 1.

2. This command must be performed in power-down mode.

6.3.3 Antispike filter management on mixed I²C/MIPI I3C[®] bus

In the LIS2DUX12, the SDA and SCL lines are common to both I²C and I3C. The I²C bus requires antispike filters on the SDA and SCL pins that are not compatible with I3C timing.

The device acts as a standard I²C target as long as it is in deep power-down or in soft power-down with an I²C static address.

When in deep power-down, the master must emit START, STATIC ADDRESS R/W (or dynamic address if previously assigned) at open-drain speed using I²C fast mode plus reference timing to perform a power-up command.

When the device is in soft power-down for the first time after a transition from the deep power-down state, the device is capable of detecting and disabling the I²C antispike filter after detecting the broadcast address (7'h7E/W). In order to guarantee proper behavior of the device, the I3C master must emit the first START, 7'h7E/W at open-drain speed using I²C fast mode plus reference timing.

After detecting the broadcast address, the device can receive the I3C dynamic address following the I3C pushpull timing. If the device is not assigned a dynamic address, then it continues to operate as an I²C device with no antispike filter. For the case in which the host decides to keep the device as I²C with an antispike filter, there is a configuration required to keep the antispike filter active. This configuration is done by writing the ASF_ON bit to 1 in the I3C_IF_CTRL (33h) register. This configuration forces the antispike filter to always be turned on instead of being managed by the communication on the bus.

7 Register mapping

The table given below provides a list of the 8-bit registers embedded in the device and the corresponding addresses.

		Regi	ster address		
Name	Type ⁽¹⁾	Hex	Binary	- Default	Comment
EXT_CLK_CFG	R/W	08	00001000	00000000	
PIN_CTRL	R/W	0C	00001100	00000000	
WAKE_UP_DUR_EXT	R/W	0E	00001110	00000000	
WHO_AM_I	R	0F	00001111	01000111	
CTRL1	R/W	10	00010000	00010000	
CTRL2	R/W	11	00010001	00000000	
CTRL3	R/W	12	00010010	00000000	
CTRL4	R/W	13	00010011	00000000	
CTRL5	R/W	14	00010100	00000000	
FIFO_CTRL	R/W	15	00010101	00000000	
FIFO_WTM	R/W	16	00010110	00000000	
INTERRUPT_CFG	R/W	17	00010111	00000000	
SIXD	R/W	18	00011000	00000000	
WAKE_UP_THS	R/W	1C	00011100	00000000	
WAKE_UP_DUR	R/W	1D	00011101	00000000	
FREE_FALL	R/W	1E	00011110	00000000	
MD1_CFG	R/W	1F	00011111	00000000	
MD2_CFG	R/W	20	00100000	00000000	
WAKE_UP_SRC	R	21	00100001	00000000	
TAP_SRC	R	22	00100010	00000000	
SIXD_SRC	R	23	00100011	00000000	
ALL_INT_SRC	R	24	00100100	00000000	
STATUS	R	25	00100101	00000000	
FIFO_STATUS1	R	26	00100110	00000000	
FIFO_STATUS2	R	27	00100111	00000000	
OUT_X_L	R	28	00101000	00000000	
OUT_X_H	R	29	00101001	00000000	
OUT_Y_L	R	2A	00101010	00000000	
OUT_Y_H	R	2B	00101011	00000000	
OUT_Z_L	R	2C	00101100	00000000	
OUT_Z_H	R	2D	00101101	00000000	
OUT_T_L	R	2E	00101110	00000000	
OUT_T_H	R	2F	00101111	00000000	
SELF_TEST	R/W	32	00110010	00000000	
I3C_IF_CTRL	R/W	33	00110011	00000000	

Table 18. Register map

Norma	T	Register address		Defeult	Commont
Name	Type ⁽¹⁾	Hex	Binary	- Default	Comment
EMB_FUNC_STATUS_MAINPAGE	R	34	00110100	00000000	
FSM_STATUS_MAINPAGE	R	35	00110101	00000000	
MLC_STATUS_MAINPAGE	R	36	00110110	00000000	
SLEEP	R/W	3D	00111101	00000000	
EN_DEVICE_CONFIG	W	3E	00111110	00000000	
FUNC_CFG_ACCESS	R/W	3F	00111111	00000000	
FIFO_DATA_OUT_TAG	R	40	0100000	00000000	
FIFO_DATA_OUT_X_L	R	41	01000001	00000000	
FIFO_DATA_OUT_X_H	R	42	01000010	00000000	
FIFO_DATA_OUT_Y_L	R	43	01000011	00000000	
FIFO_DATA_OUT_Y_H	R	44	01000100	00000000	
FIFO_DATA_OUT_Z_L	R	45	01000101	00000000	
FIFO_DATA_OUT_Z_H	R	46	01000110	00000000	
FIFO_BATCH_DEC	R/W	47	01000111	00000000	
TAP_CFG0	R/W	6F	01101111	00000000	
TAP_CFG1	R/W	70	01110000	00000000	
TAP_CFG2	R/W	71	01110001	00000000	
TAP_CFG3	R/W	72	01110010	00000000	
TAP_CFG4	R/W	73	01110011	00000000	
TAP_CFG5	R/W	74	01110100	00000000	
TAP_CFG6	R/W	75	01110101	00000000	
TIMESTAMP0	R	7A	01111010	00000000	
TIMESTAMP1	R	7B	01111011	00000000	
TIMESTAMP2	R	7C	01111100	00000000	
TIMESTAMP3	R	7D	01111101	00000000	

1. *R* = read-only register, *R/W* = readable/writable register

Reserved registers must not be changed. Writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

57

8 Register description

8.1 EXT_CLK_CFG (08h)

R/W

Table 19. EXT_CLK_CFG register

| EXT_CLK_EN | 0 ⁽¹⁾ |
|------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|

1. This bit must be set to 0 for the correct operation of the device.

Table 20. EXT_CLK_CFG register description

	If this bit is set to 1, the external oscillator, forced through the RES/EXT_CLK pin, replaces the internal oscillator. Default value: 0
	Supported frequency 102.4 kHz \pm 5%, supported duty cycle 50% \pm 10%

8.2 PIN_CTRL (0Ch)

R/W

Table 21. Table 20. PIN_CTRL register

SDO_PU_EN	SDA_PU_EN	PD_DIS_INT2	PD_DIS_INT1	H_LACTIVE	CS_PU_DIS	PP_OD	SIM

Table 22. PIN_CTRL register description

SDO_PU_EN	If 1, enables the internal pull-up of the SDO/SA0 pin.
SDA_PU_EN	If 1, enables the internal pull-up of the SDA/SDI/SDO pin.
PD_DIS_INT2 If 1, disables the internal pull-down of the INT2 pin.	
PD_DIS_INT1	If 1, disables the internal pull-down of the INT1 pin.
H LACTIVE	Interrupt active level
H_LACTIVE	(0: interrupts active-high (default); 1: Interrupts active-low)
CS_PU_DIS	If 1, disables the internal pull-up of the CS pin.
PP OD	Push-pull/open-drain mode for INT pins
	(0: INT pins in push-pull mode (default); 1: INT pins in open-drain mode)
SIM	SPI 3 or 4-wire mode
	(0: 4-wire SPI (default); 1: 3-wire SPI)

8.3 WAKE_UP_DUR_EXT (0Eh)

R/W

Table 23. WAKE_UP_DUR_EXT register

0 ⁽¹⁾ 0 ⁽¹⁾ 0 ⁽¹⁾ WU_DUR_ EXTENDED 0 ⁽¹⁾ 0 ⁽¹⁾ 0 ⁽¹⁾ 0 ⁽¹⁾	EXTENDED	0(1)	0 ⁽¹⁾	0 ⁽¹⁾						
--	------------------	------------------	------------------	------------------	------------------	----------	------	------------------	------------------	--

1. This bit must be set to 0 for the correct operation of the device.

Table 24. WAKE_UP_DUR_EXT register description

		This bit is used to select the resolution of WAKE_DUR[1:0] bits in register WAKE_UP_DUR (1Dh). Default value: 0
WU_DUR_EXTENDED	Default value: 0	

8.4 WHO_AM_I (0Fh)

This register is a read-only register. Its value is fixed at 47h.

0 1 0 0 0 1 1 1	Table 25. WHO_AM_I register default values							
	0	1	0	0	0	1	1	1

8.5 CTRL1 (10h)

R/W

Table 26. CTRL1 register

SMART_POWER _EN	INT1_ ON_RES	SW_ RESET	IF_ADD_ INC	DRDY_ PULSED	WU_X_EN	WU_Y_EN	WU_Z_EN
--------------------	-----------------	--------------	----------------	-----------------	---------	---------	---------

Table 27. CTRL1 register description

SMART_POWER_EN	Enables smart power management when the embedded functions are enabled. Default value: 0
	(0: disabled; 1: enabled)
INT1_ON_RES ⁽¹⁾	Enables routing the interrupt signals configured on the INT1 pin to the RES/EXT_CLK pin. Default value: 0
	(0: disabled; 1: enabled)
	Software reset, resets all CTRL registers to their default values. Default value: 0
SW_RESET	(0: disabled; 1: enabled)
	This bit is automatically reset to 0 at the end of the procedure.
	The register address is automatically incremented during a multiple-byte access with a serial interface.
IF_ADD_INC	(0: disabled;
	1: enabled (default))
	Enables pulsed data-ready mode
DRDY_PULSED	(0: data-ready latched mode (returns to 0 only after reading over an interface) (default);
	1: data-ready pulsed mode (the data-ready pulses are typ. 90 µs long))
WU_X_EN	Enables wake-up event detection status on the X-axis. Default value: 0 (0: disabled; 1: enabled)
WU_Y_EN	Enables wake-up event detection status on the Y-axis. Default value: 0 (0: disabled; 1: enabled)
WU_Z_EN	Enables wake-up event detection status on the Z-axis. Default value: 0 (0: disabled; 1: enabled)

1. When the MIPI I3C[®] interface is used, this bit must be set to 0.

8.6 CTRL2 (11h)

R/W

Table 28. CTRL2 register

INT1_ BOOT	INT1_FIFO _FULL	INT1_FIFO _TH	INT1_FIFO _OVR	INT1_ DRDY	0(1)	0 ⁽¹⁾	0(1)
---------------	--------------------	------------------	-------------------	---------------	------	------------------	------

1. This bit must be set to 0 for the correct operation of the device.

Table 29. CTRL2 register description

INT1_BOOT	Enables boot status on INT1 pin. Default value: 0 (0: disabled; 1: enabled)
INT1_FIFO_FULL	Enables FIFO full on INT1 pin. Default value: 0 (0: disabled; 1: enabled)
INT1_FIFO_TH	Enables FIFO threshold interrupt on INT1 pin. Default value: 0 (0: disabled; 1: enabled)
INT1_FIFO_OVR	Enables overrun interrupt on INT1 pin. Default value: 0 (0: disabled; 1: enabled)
INT1_DRDY	Data-ready interrupt on INT1 pin. Default value: 0 (0: disabled; 1: enabled)

8.7 CTRL3 (12h)

R/W

Table 30. CTRL3 register

INT2_ BOOT	INT2_FIFO _FULL	INT2_FIFO _TH	INT2_FIFO _OVR	INT2_ DRDY	HP_EN	ST_SIGN_Y	ST_SIGN_X
---------------	--------------------	------------------	-------------------	---------------	-------	-----------	-----------

Table 31. CTRL3 register description

INT2_BOOT	Enables boot status on INT2 pin. Default value: 0 (0: disabled; 1: enabled)
INT2_FIFO_FULL	Enables FIFO full on INT2 pin. Default value: 0 (0: disabled; 1: enabled)
INT2_FIFO_TH	Enables FIFO threshold interrupt on INT2 pin. Default value: 0 (0: disabled; 1: enabled)
INT2_FIFO_OVR	Enables overrun interrupt on INT2 pin. Default value: 0 (0: disabled; 1: enabled)
INT2_DRDY	Data-ready interrupt on INT2 pin. Default value: 0 (0: disabled; 1: enabled)
HP EN ⁽¹⁾	Enables high-performance mode. Default value: 0
	(0: low-power mode; 1: high-performance mode)
ST_SIGN_Y	Configures the sign of the self-test for the Y-axis. Default value: 0
ST_SIGN_X	Configures the sign of the self-test for the X-axis. Default value: 0

1. The value of this bit can be changed in power-down mode only.

8.8 CTRL4 (13h)

R/W

Table 32. CTRL4 register

INACT_ ODR1	INACT_ ODR0	BDU	EMB_FUNC _EN	FIFO_EN	0(1)	SOC	BOOT
----------------	----------------	-----	-----------------	---------	------	-----	------

1. This bit must be set to 0 for the correct operation of the device.

Table 33. CTRL4 register description

INACT_ODR[1:0]	If the activity/inactivity function is enabled, then these bits select the accelerometer ODR during inactivity status, see Table 34.
BDU	Sensing chain block data update ⁽¹⁾ (0: output registers MSByte and LSByte independent continuous update (default); 1: output registers are not updated until MSByte and LSByte have both been read)
EMB_FUNC_EN	Enables embedded functions. To be set to 1 before configuring the embedded functions. Default value: 0 (0: disabled; 1: enabled)
FIFO_EN	Enables batching in FIFO. To be set to 1 before configuring the FIFO buffer. Default value: 0 (0: disabled; 1: enabled)
SOC	Start of conversion bit. When one-shot mode using the interface (ODR[3:0] = 1111 in the CTRL5 (14h) register) is enabled, this bit provides the start for the measurement. This bit is automatically cleared.
BOOT	Reboots memory content. Default value: 0 (0: normal operating mode; 1: reboot memory content) This bit is automatically cleared. For proper execution of the boot procedure, set the device in high- performance mode.

1. BDU is available in ultralow-power mode and low-power mode only.

Table 34. ODR frequency in inactivity state

INACT_ODR1	INACT_ODR0	Frequency [Hz]
0	0	Stationary/motion detection: when selected, no ODR change is done if inactivity condition is detected (default)
0	1	1.6
1	0	3
1	1	25

8.9 CTRL5 (14h)

R/W

Table 35. CTRL5 register

							F00
ODR3	ODR2	ODR1	ODR0	BW1	BW0	FS1	FS0

Table 36. CTRL5 register description

ODR[3:0]	ODR selection, see Table 37.
	Selects the device bandwidth, which is dependent on the ODR selected. In high-performance mode (all ODR values) and in low-power mode for ODR ≥50 Hz, the available bandwidths are:
	ODR/2 (BW[1:0] = 00);
BW[1:0]	ODR/4 (BW[1:0] = 01);
	ODR/8 (BW[1:0] = 10);
	ODR/16 (BW[1:0] = 11).
	In low-power mode for ODR < 50 Hz, refer to Table 38.
FS[1:0]	Sets the full scale, see Table 39.

Table 37. Operating modes

ODR[3:0]	Operating mode
0000	Power-down
0001	1.6 Hz in ultralow-power
0010	3 Hz in ultralow-power
0011	25 Hz in ultralow-power
0100	6 Hz
0101	12.5 Hz
0110	25 Hz
0111	50 Hz
1000	100 Hz
1001	200 Hz
1010	400 Hz
1011	800 Hz
1110	One-shot using the INT2 pin
1111	One-shot using the interface

Table 38. Bandwidth selection (low-power mode with ODR < 50 Hz)

ODR [Hz]	BW[1:0]	BW [Hz]
	00	-
6	01	-
0	10	-
	11	3
	00	-
12.5	01	-
12.5	10	6
	11	3
	00	-
25	01	12.5
25	10	6
	11	3

Table 39. Full-scale selection

FS1	FS0	Full scale
0	0	±2 g
0	1	±4 g
1	0	±8 g
1	1	±16 g

8.10 FIFO_CTRL (15h)

R/W

CFG_CHG_EN	FIFO_ DEPTH	DIS_HARD_ RST_CS	0 ⁽¹⁾	STOP_ON _FTH	FIFO_MODE2	FIFO_MODE1	FIFO_MODE0
------------	----------------	---------------------	------------------	-----------------	------------	------------	------------

1. This bit must be set to 0 for the correct operation of the device.

Table 40. FIFO_CTRL register description

CFG_CHG_EN	Enables batching in FIFO of the device configuration and timestamp value when the ODR (output data rate) or the BDR (batch data rate) changes. Default value: 0 (0: disabled; 1: enabled)
FIFO_DEPTH	If 1, enables 2x depth mode for FIFO buffer.
DIS_HARD_RST_CS	If this bit is set to 0 and the power-up sequence has been performed over the I ² C/I3C interface, resetting the CS pin is equivalent to performing a deep power-off command (see Section 3.3.3: Deep power-off command). Otherwise, if this bit is set to 1, resetting the CS pin has no effect. Default value: 0
STOP_ON_FTH	Sensing chain FIFO stop values memorization at threshold level. (0: FIFO depth is not limited (default); 1: FIFO depth is limited to threshold level)
FIFO_MODE[2:0] ⁽¹⁾	Different FIFO modes are enabled as shown in Table 41.

1. The user must set the FIFO_EN bit to 1 in the CTRL4 (13h) register before setting the FIFO_MODE[2:0] bits.

Table 41. Selection of FIFO mode

FIFO_MODE2	FIFO_MODE1	FIFO_MODE0	Mode
0	0	0	Bypass mode
0	0	1	FIFO mode: stops collecting data when FIFO is full
0	1	0	Reserved
0	1	1	Continuous-to-FIFO: stream mode until the trigger is deasserted, then FIFO mode
1	0	0	Bypass-to-continuous: bypass mode until the trigger is deasserted, then continuous mode
1	0	1	Reserved
1	1	0	Continuous mode: if the FIFO is full, the new sample overwrites the older sample.
1	1	1	Bypass-to-FIFO: bypass mode until the trigger is deasserted, then FIFO mode

8.11 FIFO_WTM (16h)

R/W

Table 42. FIFO_WTM register

XL_ONLY _FIFO	FTH6	FTH5	FTH4	FTH3	FTH2	FTH1	FTH0
------------------	------	------	------	------	------	------	------

Table 43. FIFO_WTM register description

	FIFO data configuration.
XL_ONLY_FIFO	If this bit is set to 0 (default), both the accelerometer data and the temperature data are stored in FIFO.
	If this bit is set to 1, only accelerometer data are stored in FIFO.
FTH[6:0]	FIFO watermark threshold, maximum value is 127.

8.12 INTERRUPT_CFG (17h)

R/W

Table 44. INTERRUPT_CFG register

TIMESTAMP _EN	0(1)	WAKE_ THS_W	0(1)	SLEEP_STAT US_ON_INT	DIS_RST_LIR _ALL_INT	LIR	INTERRUPTS _ENABLE	
------------------	------	----------------	------	-------------------------	-------------------------	-----	-----------------------	--

1. This bit must be set to 0 for the correct operation of the device.

Table 45. INTERRUPT_CFG register description

TIMESTAMP_EN	Enables timestamp counter. The counter is readable in TIMESTAMP0 (7Ah), TIMESTAMP1 (7Bh), TIMESTAMP2 (7Ch), and TIMESTAMP3 (7Dh). Default value: 0 (0: disabled; 1: enabled)
WAKE_THS_W	Weight of 1 LSB of wake-up threshold. Default value: 0 (0: 1 LSB = FS_XL / (2 ⁶); 1: 1 LSB = FS_XL / (2 ⁸))
SLEEP_STATUS_ON_INT	Sends the sleep status instead of sleep change to INT pins (only if INT1_SLEEP_CHANGE or INT2_SLEEP_CHANGE bits are enabled, respectively in registers MD1_CFG (1Fh) and MD2_CFG (20h)). Default value: 0 (0: sleep change on INT pins; 1: sleep status on INT pins)
DIS_RST_LIR_ALL_INT	If 1, disables the reset of the interrupt flags when ALL_INT_SRC (24h) is read.
LIR	Interrupt mode configuration (see Table 8). Default value: 0 (0: interrupt level mode; 1: interrupt latched mode)
INTERRUPTS_ENABLE	Enables basic interrupts (6D/4D, free-fall, wake-up, single/double/triple-tap, activity/inactivity). Default value: 0 (0: interrupt disabled; 1: interrupt enabled)

8.13 SIXD (18h)

R/W

Table 46. SIXD register

D4D_EN D6D_THS1 D6D_THS0 0 ⁽¹⁾ 0 ⁽¹⁾ 0 ⁽¹⁾ 0 ⁽¹⁾	0 ⁽¹⁾
--	------------------

1. This bit must be set to 0 for the correct operation of the device.

Table 47. SIXD register description

D4D_EN	Enables 4D orientation detection. Z-axis position detection is disabled. Default value: 0 (0: disabled; 1: enabled)
	Thresholds for 4D/6D function (00: 80 degrees (default);
D6D_THS[1:0]	01: 70 degrees;
	10: 60 degrees; 11: 50 degrees)

8.14 WAKE_UP_THS (1Ch)

R/W

Table 48. WAKE_UP_THS register

0 ⁽¹⁾ SLEE ON		WK_THS4	WK_THS3	WK_THS2	WK_THS1	WK_THS0
-----------------------------	--	---------	---------	---------	---------	---------

1. This bit must be set to 0 for the correct operation of the device.

Table 49. WAKE_UP_THS register description

	If 1, activity/inactivity function is enabled.
WK_THS[5:0]	Threshold for wake-up: 1 LSB weight depends on WAKE_THS_W in INTERRUPT_CFG (17h). Default value: 000000

8.15 WAKE_UP_DUR (1Dh)

R/W

Table 50. WAKE_UP_DUR register

FF_DUR5	WAKE_ DUR1	WAKE_ DUR0	ST_SIGN_Z	SLEEP_ DUR3	SLEEP_ DUR2	SLEEP_ DUR1	SLEEP_ DUR0	
---------	---------------	---------------	-----------	----------------	----------------	----------------	----------------	--

Table 51. WAKE_UP_DUR register description

FF_DUR5	Free-fall duration. Default value: 0 In conjunction with FF_DUR[4:0] in FREE_FALL (1Eh). 1 LSB: 1 ODR_time
WAKE_DUR[1:0]	Wake-up duration. Default value: 00 When the WU_DUR_EXTENDED bit in register WAKE_UP_DUR_EXT (0Eh) is set to 0, 1LSB of WAKE_DUR = 1 ODR_time, otherwise the following durations are selectable: (00: 3 ODR_time; 01: 7 ODR_time; 10: 11 ODR_time; 11: 15 ODR_time)
ST_SIGN_Z	Configures the sign of the self-test for the Z-axis. Default value: 0
SLEEP_DUR[3:0]	Duration to go in sleep mode. Default value: 0000 which corresponds to 16 ODR_time 1 LSB: 512 ODR_time

8.16 FREE_FALL (1Eh)

R/W

Table 52. FREE_FALL register

FF_DUR4	FF_DUR3	FF_DUR2	FF_DUR1	FF_DUR0	FF_THS2	FF_THS1	FF_THS0

Table 53. FREE_FALL register description

	Free-fall duration. Default value: 0
FF_DUR[4:0]	In conjunction with FF_DUR5 in WAKE_UP_DUR (1Dh)
	1 LSB: 1 ODR_time
	Free-fall threshold
	(000: 156 m <i>g</i> ;
	001: 219 mg;
	010: 250 mg;
FF_THS[2:0]	011: 312 mg;
	100: 344 mg;
	101: 406 mg;
	110: 469 m <i>g</i> ;
	111: 500 mg)

8.17 MD1_CFG (1Fh)

R/W

Each bit in this register enables a signal to be carried over INT1; the pin's output is the OR combination of the signals selected here and in register CTRL2 (11h).

Table 54. MD1_CFG register

INT1_SLEEP CHANGE 0 ⁽¹⁾	INT1_WU	INT1_FF	INT1_TAP	INT1_6D	INT1_ TIMESTAMP	INT1_EMB _FUNC
---------------------------------------	---------	---------	----------	---------	--------------------	-------------------

1. This bit must be set to 0 for the correct operation of the device.

Table 55. MD1_CFG register description

INT1_SLEEP_CHANGE	Enables sleep change (or sleep status, depending on SLEEP_STATUS_ON_INT bit) on INT1 pin.
INT1_WU	Enables routing wake-up event to the INT1 pin.
INT1_FF	Enables routing free-fall event to the INT1 pin.
INT1_TAP	Enables routing tap event to the INT1 pin.
INT1_6D	Enables routing 6D recognition event to the INT1 pin.
INT1_TIMESTAMP	Enables routing the alert of timestamp overflow within 2.5 ms to the INT1 pin.
INT1_EMB_FUNC	Enables routing embedded functions event to the INT1 pin.

8.18 MD2_CFG (20h)

R/W

Each bit in this register enables a signal to be carried over INT2; the pin's output is the OR combination of the signals selected here and in register CTRL3 (12h).

Table 56. MD2_CFG register

INT2_SLEEP CHANGE	0(1)	INT2_WU	INT2_FF	INT2_TAP	INT2_6D	INT2_ TIMESTAMP	INT2_EMB _FUNC]
----------------------	------	---------	---------	----------	---------	--------------------	-------------------	---

1. This bit must be set to 0 for the correct operation of the device.

Table 57. MD2_CFG register description

INT2_SLEEP_CHANGE	Enables sleep change (or sleep status, depending on SLEEP_STATUS_ON_INT bit) on INT2 pin.
INT2_WU	Enables routing wake-up event to the INT2 pin.
INT2_FF	Enables routing free-fall event to the INT2 pin.
INT2_TAP	Enables routing tap event to the INT2 pin.
INT2_6D	Enables routing 6D recognition event to the INT2 pin.
INT2_TIMESTAMP	Enables routing the alert of timestamp overflow within 2.5 ms to the INT2 pin.
INT2_EMB_FUNC	Enables routing embedded functions event to INT2.

WAKE_UP_SRC (21h) 8.19

R

Table 58. WAKE_UP_SRC register

- (SLEEP_ CHANGE_IA	FF_IA	SLEEP_ STATE	WU_IA	X_WU	Y_WU	Z_WU
-----	---------------------	-------	-----------------	-------	------	------	------

	Table 59. WAKE_UP_SRC register description
SLEEP CHANGE IA	Detection of change in activity/inactivity status. Default value: 0
SEEF_CHANGE_IA	(0: change status not detected; 1: change status detected)
FF_IA	Free-fall event detection status. Default value: 0
	(0: free-fall event not detected; 1: free-fall event detected)
SLEEP_STATE	Sleep status bit. Default value: 0
OLLEI _OTATE	(0: activity status; 1: inactivity status)
WU IA	Wake-up event detection status. Default value: 0
	(0: wake-up event not detected; 1: wake-up event detected)
x wu	Wake-up event detection status on X-axis. Default value: 0
~_~~	(0: wake-up event on X-axis not detected; 1: wake-up event on X-axis detected)
Y WU	Wake-up event detection status on Y-axis. Default value: 0
1_000	(0: wake-up event on Y-axis not detected; 1: wake-up event on Y-axis detected)
z wu	Wake-up event detection status on Z-axis. Default value: 0
2_**0	(0: wake-up event on Z-axis not detected; 1: wake-up event on Z-axis detected)

8.20 TAP_SRC (22h)

R

Table 60. TAP_SRC register

TAP_IA	SINGLE_ TAP_IA	DOUBLE_ TAP_IA	TRIPLE_ TAP_IA	-	-	_	-	
--------	-------------------	-------------------	-------------------	---	---	---	---	--

Table 61. TAP_SRC register description

TAP_IA	Tap event detection status. Default: 0 (0: tap event not detected; 1: tap event detected)
SINGLE_TAP_IA	Single-tap event status. Default value: 0 (0: single-tap event not detected; 1: single-tap event detected)
DOUBLE_TAP_IA	Double-tap event detection status. Default value: 0 (0: double-tap event not detected; 1: double-tap event detected)
TRIPLE_TAP_IA	Triple-tap event detection status. Default value: 0 (0: triple-tap event not detected; 1: triple-tap event detected)

8.21 SIXD_SRC (23h)

R

Table 62. SIXD_SRC register

-	D6D_IA	ZH	ZL	YH	YL	XH	XL

Table 63. SIXD_SRC register description

	Source of change in 6D/4D orientation. Default value: 0
D6D_IA	(0: change orientation not detected; 1: change orientation detected)
ZH	Z-axis high event (over threshold). Default value: 0
211	(0: event not detected; 1: event (over threshold) detected)
ZL	Z-axis low event (under threshold). Default value: 0
ZL	(0: event not detected; 1: event (under threshold) detected)
YH	Y-axis high event (over threshold). Default value: 0
111	(0: event not detected; 1: event (over-threshold) detected)
YL	Y-axis low event (under threshold). Default value: 0
16	(0: event not detected; 1: event (under threshold) detected)
хн	X-axis high event (over threshold). Default value: 0
	(0: event not detected; 1: event (over threshold) detected)
XL	X-axis low event (under threshold). Default value: 0
	(0: event not detected; 1: event (under threshold) detected)

8.22 ALL_INT_SRC (24h)

R

Table 64. ALL_INT_SRC register

-	SLEEP_	D6D_	TRIPLE_	DOUBLE_	SINGLE_	WU_IA_	FF_IA_
	CHANGE_IA_ALL	IA_ALL	TAP_ALL	TAP_ALL	TAP_ALL	ALL	ALL

SLEEP CHANGE IA ALL	Detection of change in activity/inactivity status. Default value: 0
	(0: change in status not detected; 1: change in status detected)
	Source of change in 6D/4D orientation. Default value: 0
D6D_IA_ALL	(0: change in orientation not detected; 1: change in orientation detected)
	Triple-tap event status. Default value: 0
TRIPLE_TAP_ALL	(0: event not detected, 1: event detected)
	Double-tap event status. Default value: 0
DOUBLE_TAP_ALL	(0: event not detected, 1: event detected)
SINGLE TAP ALL	Single-tap event status. Default value: 0
SINGLE_TAF_ALL	(0: event not detected, 1: event detected)
	Wake-up event status. Default value: 0
WU_IA_ALL	(0: event not detected, 1: event detected)
	Free-fall event status. Default value: 0
FF_IA_ALL	(0: event not detected, 1: event detected)

Table 65. ALL_INT_SRC register description

8.23 STATUS (25h)

R

Table 66. STATUS register

		INT_GLOBAL	-	-	-	-	DRDY
--	--	------------	---	---	---	---	------

Table 67. STATUS register description

INT_GLOBAL	 This bit is 1 if one of the following events occur: detection of change in activity/inactivity status source of change in 6D/4D orientation single/double/triple-tap event status wake-up event detection status free-fall event detection status sleep event status
DRDY	This bit is 1 when new accelerometer data is available and until the MSB of one of the output registers has been read.

8.24 FIFO_STATUS1 (26h)

R

Table 68. FIFO_STATUS1 register

FIFO_ FIF WTM_IA OV	FU	-	-	-	-	-
------------------------	----	---	---	---	---	---

Table 69. FIFO_STATUS1 register description

	FIFO watermark status. The watermark is set through bits FTH[6:0] in FIFO_WTM (16h).
FIFO_WTM_IA	(0: FIFO filling is lower than WTM;
	1: FIFO filling is equal to or higher than WTM)
FIFO_OVR_IA	FIFO overrun status: 1 if FIFO has overwritten data.

8.25 FIFO_STATUS2 (27h)

R

Table 70. FIFO_STATUS2 register

FSS7	FSS6	FSS5	FSS4	FSS3	FSS2	FSS1	FSS0

Table 71. FIFO_STATUS2 register description

FSS[7:0]

8.26 OUT_X_L (28h)

R

Table 72. OUT_X_L register

OUTX7	OUTX6	OUTX5	OUTX4	OUTX3	OUTX2	OUTX1	OUTX0
-------	-------	-------	-------	-------	-------	-------	-------

Table 73. OUT_X_L register description

OUTX[7:0]	LSBs of X data output

8.27 OUT_X_H (29h)

R

Table 74. OUT_X_H register

|--|

Table 75. OUT_X_H register description

OUTX[15:8]	MSBs of X data output
------------	-----------------------

8.29

8.30

OUT_Y_L (2Ah) R 8.28

OUTY7	OUTY6	OUTY5	OUTY4	OUTY3	OUTY2	OUTY1	OUTYO
		Table	77. OUT_Y_L	register desc	ription		
OUTY[7:0]		LS	SBs of Y data out	put			
א_ץ_דעכ	(2Bh)		Table 78. OUT	_Y_H registe	r		
	(2Bh) OUTY14	OUTY13	Table 78. OUT OUTY12	_ Y_H registe OUTY11	r OUTY10	OUTY9	OUTY8
2				OUTY11	OUTY10	OUTY9	OUTY8
2			OUTY12	OUTY11	OUTY10	OUTY9	OUTY

Table 80. OUT_Z_L register

OUTZ7 OUTZ6 OUTZ5	OUTZ4	OUTZ3	OUTZ2	OUTZ1	OUTZ0
-------------------	-------	-------	-------	-------	-------

Table 81. OUT_Z_L register description

OUTZ[7:0]	LSBs of Z data output
-----------	-----------------------

OUT_Z_H (2Dh) 8.31

R

Table 82. OUT_Z_H register

OUTZ15	OUTZ14	OUTZ13	OUTZ12	OUTZ11	OUTZ10	OUTZ9	OUTZ8

Table 83. OUT_Z_H register description

OUTZ[15:8] MSBs of Z data output

8.33

OUT_T_L (2Eh) R 8.32

OUTT7	OUTT6	OUTT5	OUTT4	OUTT3	OUTT2	OUTT1	OUTT0
		Table	85. OUT_T_L I	register desc	ription		
OUTT[7:0] LSBs of temperature data output. The four least significant bits are always zero since the data is in 12-bit format.							
		ire data output.	Γhe four least sig	nificant bits are	always zero sin	ce the data is in	12-bit format
DUT_T_H						ce the data is in	12-bit format
DUTT[7:0] LS			The four least sig			ce the data is in	12-bit format

Table 87. OUT_T_H register description	

		OUTT[15:8]	MSBs of temperature data output
--	--	------------	---------------------------------

8.34 SELF_TEST (32h)

R/W

Table 88. SELF_TEST register

-	-	ST1	ST0	-	-	-	T_DIS

Table 89. SELF_TEST register description

ST[1:0]	These bits enable data acquisition during the self-test procedure.
T DIS	Disables temperature sensor acquisition chain. Default value: 0
1_013	(0: acquisition chain enabled, 1: acquisition chain disabled)

8.35 I3C_IF_CTRL (33h)

R/W

Table 90. I3C_IF_CTRL register

DIS ASF_ON	-	-	-	BUS_ACT_ SEL_1	BUS_ACT_ SEL_0
------------	---	---	---	-------------------	-------------------

Table 91. I3C_IF_CTRL register description

DIS DRSTDAA	If 0, direct RSTDAA is supported.				
	If 1, direct RSTDAA is disabled.				
ASF_ON	If 1, enables the antispike filter even if the dynamic address is assigned.				
	Bus available time selection for IBI (in-band interrupt):				
BUS_ACT_SEL_[1:0]	(00: 20 µs;				
	01: 50 µs (default);				
	10: 1 ms;				
	11: 25 ms)				

8.36 EMB_FUNC_STATUS_MAINPAGE (34h)

R

Table 92. EMB_FUNC_STATUS_MAINPAGE register

IS_FSM_LC	0	IS_SIGMOT	IS_TILT	IS_STEP_DET	0	0	0

Table 93. EMB_FUNC_STATUS_MAINPAGE register description

IS_FSM_LC	Interrupt status bit for FSM long counter timeout interrupt event. (1: interrupt detected; 0: no interrupt)
IS_SIGMOT	Interrupt status bit for significant motion detection. (1: interrupt detected; 0: no interrupt)
IS_TILT	Interrupt status bit for tilt detection. (1: interrupt detected; 0: no interrupt)
IS_STEP_DET	Interrupt status bit for step detection. (1: interrupt detected; 0: no interrupt)

8.37

FSM_STATUS_MAINPAGE (35h)

R

Table 94. FSM_STATUS_MAINPAGE register

IS_FSM8	IS_FSM7	IS_FSM6	IS_FSM5	IS_FSM4	IS_FSM3	IS_FSM2	IS_FSM1

Table 95. FSM_STATUS_MAINPAGE register description

IS_FSM8	Interrupt status bit for FSM8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM7	Interrupt status bit for FSM7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM6	Interrupt status bit for FSM6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM5	Interrupt status bit for FSM5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM4	Interrupt status bit for FSM4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM3	Interrupt status bit for FSM3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM2	Interrupt status bit for FSM2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM1	Interrupt status bit for FSM1 interrupt event. (1: interrupt detected; 0: no interrupt)

8.38 MLC_STATUS_MAINPAGE (36h)

R

Table 96. MLC_STATUS_MAINPAGE register

0	0	0	0	IS_MLC4	IS_MLC3	IS_MLC2	IS_MLC1

Table 97. MLC_STATUS_MAINPAGE register description

IS_MLC4	Interrupt status bit for MLC4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC3	Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC2	Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC1	Interrupt status bit for MLC1 interrupt event. (1: interrupt detected; 0: no interrupt)

8.39 SLEEP (3Dh)

R/W

Table 98. SLEEP register

|--|

Table 99. SLEEP register description

PD If this bit is set to 1, the device enters deep a power-down state. Once the device is in a deep power-down state, the register is no longer accessible.

8.40 EN_DEVICE_CONFIG (3Eh)

W

Table 100. EN_DEVICE_CONFIG register

	-	-	-	-	-	-	-	SOFT_PD
--	---	---	---	---	---	---	---	---------

Table 101. EN_DEVICE_CONFIG register description

SOFT_PD This bit allows the transition from deep power-down to soft power-down when the SPI interface is used. This bit is write only.

8.41 FUNC_CFG_ACCESS (3Fh)

Enable embedded functions register (R/W)

Table 102. FUNC_CFG_ACCESS register

EMB_FUNC_ REG_ACCESS ⁽¹⁾ 0 ⁽²⁾	0 ⁽²⁾	0(2)	0(2)	0(2)	0(2)	FSM_WR_ CTRL_EN
---	------------------	------	------	------	------	--------------------

1. When the EMB_FUNC_REG_ACCESS bit is set to 0, the FUNC_CFG_ACCESS register is a read/write register. When the EMB_FUNC_REG_ACCESS bit is set to 1, the FUNC_CFG_ACCESS register is a write-only register.

2. This bit must be set to 0 for the correct operation of the device.

Table 103. FUNC_CFG_ACCESS register description

EMB_FUNC_REG_ACCESS	Enables access to the embedded functions registers. ⁽¹⁾ Default value: 0 (0: disabled; 1: enabled)
FSM_WR_CTRL_EN	Enables the FSM to control the CTRL registers (the FSM can change some configurations of the device autonomously). Default value: 0
	(0: disabled; 1: enabled)

1. Details concerning the embedded functions registers are available in Section 9: Embedded functions register mapping and Section 10: Embedded functions register description.

8.42 FIFO_DATA_OUT_TAG (40h)

This register contains the TAG values that distinguish the different kinds of data that can be batched in FIFO (R).

Table 104. FIFO_DATA_OUT_TAG register

TAG_ SENSOR_4	TAG_ SENSOR_3	TAG_ SENSOR_2	TAG_ SENSOR_1	TAG_ SENSOR_0	0	0	-
------------------	------------------	------------------	------------------	------------------	---	---	---

Table 105. FIFO_DATA_OUT_TAG register description

	FIFO tag. Identifies the sensor in FIFO_DATA_OUT_X_L (41h) and FIFO_DATA_OUT_X_H (42h),
TAG_SENSOR_[4:0]	FIFO_DATA_OUT_Y_L (43h) and FIFO_DATA_OUT_Y_H (44h), and FIFO_DATA_OUT_Z_L (45h) and
	FIFO_DATA_OUT_Z_H (46h). For details, refer to Table 106.

Table 106. Identification of sensor in FIFO

TAG_SENSOR_[4:0]	Data in FIFO
00000	FIFO empty
00010	Accelerometer and temperature
00011	Accelerometer only data (2x depth mode)
00100	Timestamp or CFG_CHG
10010	Step counter
11010	MLC result
11011	MLC filter
11100	MLC feature
11101	FSM result

8.43 FIFO_DATA_OUT_X_L (41h) and FIFO_DATA_OUT_X_H (42h)

FIFO data output X (R)

Table 107. FIFO_DATA_OUT_X_H and FIFO_DATA_OU	IT_X_L registers
---	------------------

D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 108. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register description

D[15:0]

FIFO X-axis output

8.44 FIFO_DATA_OUT_Y_L (43h) and FIFO_DATA_OUT_Y_H (44h)

FIFO data output Y (R)

Table 109. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers

D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 110. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register description

D[15:0]	FIFO Y-axis output

8.45 FIFO_DATA_OUT_Z_L (45h) and FIFO_DATA_OUT_Z_H (46h)

FIFO data output Z (R)

Table 111. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers

D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 112. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L register description

D[15:0]	FIFO Z-axis output

8.46 FIFO_BATCH_DEC (47h)

R/W

Table 113. FIFO_BATCH_DEC register

0	0	0	DEC_TS_ BATCH_1	DEC_TS_ BATCH_0	BDR_XL_2	BDR_XL_1	BDR_XL_0
---	---	---	--------------------	--------------------	----------	----------	----------

Table 114. FIFO_BATCH_DEC register description

	Selects decimation for timestamp batching in FIFO. The write rate is the accelerometer BDR divided by the decimation decoder.
	(00: Timestamp not batched in FIFO (default);
DEC_TS_BATCH_[1:0]	01: Decimation 1: BDR_XL[Hz];
	10: Decimation 8: BDR_XL[Hz]/8 [Hz];
	11: Decimation 32: BDR_XL[Hz]/32 [Hz])
BDR_XL_[2:0]	Selects the batch data rate (write frequency in FIFO) for accelerometer data, see Table 115.

Table 115. Accelerometer batch data rate

BDR_XL_[2:0]	Accelerometer batch frequency
000	ODR (default)
001	ODR/2
010	ODR/4
011	ODR/8
100	ODR/16
101	ODR/32
110	ODR/64
111	Accelerometer not batched in FIFO

8.47 TAP_CFG0 (6Fh)

R/W

Table 116. TAP_CFG0 register

AXIS1	AXIS0	INVERT_T4	INVERT_T3	INVERT_T2	INVERT_T1	INVERT_T0	-
-------	-------	-----------	-----------	-----------	-----------	-----------	---

Table 117. TAP_CFG0 register description

	Selection of axis for tap event research:
AXIS[1:0]	(00: no axis (default);
	01: X-axis;
	10: Y-axis;
	11: Z-axis)
	These bits enable the search of the inverted peak by selecting the maximum number of samples between the first and second (inverted) peak in tap detection.
INVERT_T[4:0]	(0: disabled)
	1 LSB = 1 sample (maximum 31 samples)

8.48 TAP_CFG1 (70h)

R/W

Table 118. TAP_CFG1 register

PRE_STILL	PRE_STILL	PRE_STILL	PRE_STILL	POST_STILL	POST_STILL	POST_STILL	POST_STILL
_THS3	_THS2	_THS1	_THS0	_T3	_T2	_T1	_то

Table 119. TAP_CFG1 register description

PRE_STILL_THS[3:0] ⁽¹⁾	Threshold for stationary condition before shock. 1 LSB = 62.5 mg (maximum 937.5 mg)
POST_STILL_T[3:0]	Number of samples during stationary condition after shock and wait phases. These bits are used together with POST_STILL_T[5:4] in register TAP_CFG2 (71h). 1 LSB = 4 samples (maximum 252 samples).

1. The PRE_STILL_THS[3:0] field must be set to a value greater than 0.

8.49 TAP_CFG2 (71h)

R/W

Table 120. TAP_CFG2 register

POST_STILL _T5	POST_STILL _T4	WAIT_T5	WAIT_T4	WAIT_T3	WAIT_T2	WAIT_T1	WAIT_T0	
-------------------	-------------------	---------	---------	---------	---------	---------	---------	--

Table 121. TAP_CFG2 register description

POST_STILL_T	[5:4] Number of samples during stationary condition after shock and wait phases. These bits are used together with POST_STILL_T[3:0] in register TAP_CFG1 (70h). 1 LSB = 4 samples (maximum 252 samples).
	These bits program the number of samples to wait for the shock to finish.
WAIT_T[5:0]	1 LSB = 2 samples (maximum 126 samples).

8.50 TAP_CFG3 (72h)

R/W

Table 122. TAP_CFG3 register

	POST_STILL _THS3	POST_STILL _THS2	POST_STILL _THS1	POST_STILL _THS0	LATENCY_T3	LATENCY_T2	LATENCY_T1	LATENCY_T0
--	---------------------	---------------------	---------------------	---------------------	------------	------------	------------	------------

Table 123. TAP_CFG3 register description

POST_STILL_THS[3:0] ⁽¹⁾	Threshold for stationary condition after shock and wait phases. 1 LSB = 62.5 mg (maximum 937.5 mg)
LATENCY_T[3:0]	Maximum number of samples between consecutive taps event to detect double or triple tap. The default value of these bits is 0000b which corresponds to 16 samples. If the LATENCY_T[3:0] bits are set to a different value, 1LSB corresponds to 32 samples (maximum 480 samples).

1. The POST_STILL_THS[3:0] field must be set to a value greater than 0.

8.51 TAP_CFG4 (73h)

R/W

Table 124. TAP_CFG4 register

WAIT_END_ LATENCY 0 PE	PEAK_THS5 PEAK_TH		THS2 PEAK_THS1	PEAK_THS0
---------------------------	-------------------	--	----------------	-----------

Table 125. TAP_CFG4 register description

	This bit enables the feature to wait for the end of the latency window to exclusively determine if the event is a single, double or triple tap.
	(0: tap event flag is raised immediately for every detected tap;
WAIT_END_LATENCY	1: in case of consecutive taps, only the flag for the highest level of tap is raised. The tap event flag is raised immediately if the highest level of tap enabled in TAP_CFG5 (74h) (single, double or triple) is reached, otherwise it is raised at the end of the latency window if no additional taps are detected within the window.)
PEAK_THS[5:0]	Threshold for peak detection. 1 LSB = 62.5 mg (maximum 3937.5 mg)

8.52 TAP_CFG5 (74h)

R/W

Table 126. TAP_CFG5 register

TRIPLE_	DOUBLE_	SINGLE_	REBOUND_	REBOUND_	REBOUND_	REBOUND_	REBOUND_
TAP_EN	TAP_EN	TAP_EN	T4	Т3	T2	T1	то

Table 127. TAP_CFG5 register description

TRIPLE_TAP_EN	This bit enables the triple-tap event. Default value: 0 (0: disabled; 1: enabled)
DOUBLE_TAP_EN	This bit enables the double-tap event. Default value: 0 (0: disabled; 1: enabled)
SINGLE_TAP_EN	This bit enables the single-tap event. Default value: 0 (0: disabled; 1: enabled)
REBOUND_T[4:0]	These bits program the number of samples to wait for the rebound to finish. The default value of these bits is 00000b which means that the rebound logic is disabled. If the REBOUND_T[4:0] bits are set to a different value, 1LSB corresponds to 2 samples (maximum 62 samples).

8.53 TAP_CFG6 (75h)

R/W

Table 128. TAP_CFG6 register

| PRE_STILL_ |
|------------|------------|------------|------------|------------|------------|------------|------------|
| ST3 | ST2 | ST1 | ST0 | N3 | N2 | N1 | N0 |

Table 129. TAP_CFG6 register description

PRE_STILL_ST[3:0]	Selection of starting sample for stationary condition before shock (from the oldest sample in a buffer of 14 samples). 1 LSB = 1 sample (0: 1 st sample, 13: 14 th sample, maximum value is 13)
PRE_STILL_N[3:0]	Selection of number of samples for stationary condition before shock. 1 LSB = 1 sample (maximum 14 samples). If this field is set to 0, the stationary condition before shock is disabled.

8.54 TIMESTAMP0 (7Ah), TIMESTAMP1 (7Bh), TIMESTAMP2 (7Ch), and TIMESTAMP3 (7Dh)

R

	Table 150. TIMESTAMP Output registers							
D31	D30	D29	D28	D27	D26	D25	D24	
D23	D22	D21	D20	D19	D18	D17	D16	
D15	D14	D13	D12	D11	D10	D9	D8	
							· · · · · · · · · · · · · · · · · · ·	
D7	D6	D5	D4	D3	D2	D1	D0	

Table 130. TIMESTAMP output registers

Table 131. TIMESTAMP output register description

D[31:0]	Timestamp output registers ⁽¹⁾ : 1LSB = 10 μs (typical)
---------	--

1. Timestamp information is not accurate in ultralow-power mode.

9

Embedded functions register mapping

The table given below provides a list of the registers for the embedded functions available in the device and the corresponding addresses. Embedded functions registers are accessible when the EMB_FUNC_REG_ACCESS bit is set to 1 in the FUNC_CFG_ACCESS (3Fh) register and the EMB_FUNC_EN bit is set to 1 in the CTRL4 (13h) register.

Nome	Tura	Regis	ster address	Dofoult	Comment
Name	Туре	Hex	Binary	Default	
PAGE_SEL	R/W	02	00000010	0000001	
RESERVED	-	03			
EMB_FUNC_EN_A	R/W	04	00000100	00000000	
EMB_FUNC_EN_B	R/W	05	00000101	00000000	
EMB_FUNC_EXEC_STATUS	R	07	00000111	output	
PAGE_ADDRESS	R/W	08	00001000	00000000	
PAGE_VALUE	R/W	09	00001001	00000000	
EMB_FUNC_INT1	R/W	0A	00001010	00000000	
FSM_INT1	R/W	0B	00001011	00000000	
RESERVED	-	0C			
MLC_INT1	R/W	0D	00001101	00000000	
EMB_FUNC_INT2	R/W	0E	00001110	00000000	
FSM_INT2	R/W	0F	00001111	00000000	
RESERVED	-	10			
MLC_INT2	R/W	11	00010001	00000000	
EMB_FUNC_STATUS	R	12	00010010	output	
FSM_STATUS	R	13	00010011	output	
RESERVED	-	14			
MLC_STATUS	R	15	00010101	output	
PAGE_RW	R/W	17	00010111	00000000	
EMB_FUNC_FIFO_EN	R/W	18	00011000		
RESERVED	-	19			
FSM_ENABLE	R/W	1A	00011010	00000000	
RESERVED	-	1B			
FSM_LONG_COUNTER_L	R/W	1C	00011100	00000000	
FSM_LONG_COUNTER_H	R/W	1D	00011101	00000000	
RESERVED	-	1E			
INT_ACK_MASK	R/W	1F	00011111	00000000	
FSM_OUTS1	R	20	00100000	output	
FSM_OUTS2	R	21	00100001	output	
FSM_OUTS3	R	22	00100010	output	
FSM_OUTS4	R	23	00100011	output	
FSM_OUTS5	R	24	00100100	output	

Table 132. Register address map - embedded functions

LIS2DUX12

Embedded functions register mapping

Nomo	Turne	Register address		Default	Comment
Name	Туре	Hex	Binary	- Default	Comment
FSM_OUTS6	R	25	00100101	output	
FSM_OUTS7	R	26	00100110	output	
FSM_OUTS8	R	27	00100111	output	
STEP_COUNTER_L	R	28	00101000	output	
STEP_COUNTER_H	R	29	00101001	output	
EMB_FUNC_SRC	R/W	2A	00101010	output	
RESERVED	-	2B			
EMB_FUNC_INIT_A	R/W	2C	00101100	0000000	
EMB_FUNC_INIT_B	R/W	2D	00101101	0000000	
RESERVED	-	2E-33			
MLC1_SRC	R	34	00110100	output	
MLC2_SRC	R	35	00110101	output	
MLC3_SRC	R	36	00110110	output	
MLC4_SRC	R	37	00110111	output	
FSM_ODR	R/W	39	00111001	01001000	
MLC_ODR	R/W	3A	00111010	00010001	

Reserved registers must not be changed. Writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

10 Embedded functions register description

10.1 PAGE_SEL (02h)

Enable advanced features dedicated page (R/W)

Table 133. PAGE_SEL register

PAGE_SEL3	PAGE_SEL2	PAGE_SEL1	PAGE_SEL0	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	1 ⁽²⁾
-----------	-----------	-----------	-----------	------------------	------------------	------------------	------------------

1. This bit must be set to 0 for the correct operation of the device.

2. This bit must be set to 1 for the correct operation of the device.

Table 134. PAGE_SEL register description

PAGE_SEL[3:0]	Selects the advanced features dedicated page (from 0 to 3). Default value: 0000
---------------	---

10.2 EMB_FUNC_EN_A (04h)

Enable embedded functions register (R/W)

Table 135. EMB_FUNC_EN_A register

MLC_BEFORE 0(1) N	SIGNTIL		0(1)	0(1)	0(1)
-------------------	---------	--	------	------	------

1. This bit must be set to 0 for the correct operation of the device.

Table 136. EMB_FUNC_EN_A register description

MLC_BEFORE_FSM_EN(1)	Enables machine learning core function. When the machine learning core is enabled by setting this bit to 1, the MLC algorithms are executed before the FSM programs. Default value: 0
	(0: machine learning core function disabled;
	1: machine learning core function enabled and executed before FSM programs)
	Enables significant motion detection function. Default value: 0
SIGN_MOTION_EN	(0: significant motion detection function disabled;
	1: significant motion detection function enabled)
	Enables tilt calculation. Default value: 0
TILT_EN	(0: tilt algorithm disabled;
	1: tilt algorithm enabled)
	Enables pedometer algorithm. Default value: 0
PEDO_EN	(0: pedometer algorithm disabled;
	1: pedometer algorithm enabled)

1. The MLC_EN bit in the EMB_FUNC_EN_B (05h) register must be set to 0 when using this bit.

10.3 EMB_FUNC_EN_B (05h)

Enable embedded functions register (R/W)

Table 137. EMB_FUNC_EN_B register

0 ⁽¹⁾ 0 ⁽¹⁾ 0 ⁽¹⁾ MLC_EN 0 ⁽¹⁾ 0 ⁽¹⁾	0(1)	FSM_EN
---	------	--------

1. This bit must be set to 0 for the correct operation of the device.

Table 138. EMB_FUNC_EN_B register description

MLC_EN ⁽¹⁾	Enables machine learning core function. When the machine learning core is enabled by setting this bit to 1, the MLC algorithms are executed after executing the FSM programs. Default value: 0 (0: machine learning core function disabled; 1: machine learning core function enabled and executed after FSM programs)
FSM_EN	Enables finite state machine (FSM) function. Default value: 0 (0: FSM function disabled; 1: FSM function enabled)

1. The MLC_BEFORE_FSM_EN bit in the EMB_FUNC_EN_A (04h) register must be set to 0 when using this bit.

10.4 EMB_FUNC_EXEC_STATUS (07h)

Embedded functions execution status register (R)

Table 139. EMB_FUNC_EXEC_STATUS register

0	0	0	0	0	0	EMB_FUNC_ EXEC_OVR	EMB_FUNC _ENDOP
---	---	---	---	---	---	-----------------------	--------------------

Table 140. EMB_FUNC_EXEC_STATUS register description

EMB_FUNC_EXEC_OVR	This bit is set to 1 when the execution of the embedded functions program exceeds maximum time (new data are generated before the end of the algorithms). Default value: 0
EMB_FUNC_ENDOP	When this bit is set to 1, no embedded function is running. Default value: 0

10.5 PAGE_ADDRESS (08h)

Page address register (R/W)

Table 141. PAGE_ADDRESS register

| PAGE_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADDR7 | ADDR6 | ADDR5 | ADDR4 | ADDR3 | ADDR2 | ADDR1 | ADDR0 |

Table 142. PAGE_ADDRESS register description

PAGE_ADDR[7:0]	After setting the bit PAGE_WRITE / PAGE_READ in register PAGE_RW (17h), this register is used to set the address of the register to be written/read in the advanced features page selected through the bits PAGE_SEL [3:0] in register PAGE_SEL (02h)
	PAGE_SEL[3:0] in register PAGE_SEL (02h).

10.6 PAGE_VALUE (09h)

Page value register (R/W)

Table 143. PAGE_VALUE register

PAGE_ PAGE_ PAGE_ PAGE_ VALUE7 VALUE6 VALUE5 VALUE4	PAGE_	PAGE_	PAGE_	PAGE_
	VALUE3	VALUE2	VALUE1	VALUE0

Table 144. PAGE_VALUE register description

	These bits are used to write (if the bit PAGE_WRITE = 1 in register PAGE_RW (17h)) or read (if the bit
PAGE_VALUE[7:0]	PAGE_READ = 1 in register PAGE_RW (17h)) the data at the address PAGE_ADDR[7:0] of the selected
	advanced features page.

10.7 EMB_FUNC_INT1 (0Ah)

INT1 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT1. The pin's output supplies the OR combination of the selected signals.

Table 145. EMB_FUNC_INT1 register

INT1_ FSM_LC	0 ⁽¹⁾	INT1_ SIG_MOT	INT1_TILT	INT1_STEP _DET	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	
-----------------	------------------	------------------	-----------	-------------------	------------------	------------------	------------------	--

1. This bit must be set to 0 for the correct operation of the device.

Table 146. EMB_FUNC_INT1 register description

INT1_FSM_LC ⁽¹⁾	Enables routing FSM long counter timeout interrupt event to INT1. Default value: 0 (0: routing to INT1 disabled; 1: routing to INT1 enabled)
INT1_SIG_MOT ⁽¹⁾	Enables routing significant motion event to INT1. Default value: 0 (0: routing to INT1 disabled; 1: routing to INT1 enabled)
INT1_TILT ⁽¹⁾	Enables routing tilt event to INT1. Default value: 0 (0: routing to INT1 disabled; 1: routing to INT1 enabled)
INT1_STEP_DETECTOR ⁽¹⁾	Enables routing pedometer step recognition event to INT1. Default value: 0 (0: routing to INT1 disabled; 1: routing to INT1 enabled)

1. This bit is active if the INT1_EMB_FUNC bit of MD1_CFG (1Fh) is set to 1.

10.8 FSM_INT1 (0Bh)

INT1 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT1. The pin's output supplies the OR combination of the selected signals.

Table 147. FSM_INT1 register

INT1_FSM8	INT1_FSM7	INT1_FSM6	INT1_FSM5	INT1_FSM4	INT1_FSM3	INT1_FSM2	INT1_FSM1
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

	Enables routing FSM8 interrupt event to INT1. Default value: 0
INT1_FSM8 ⁽¹⁾	(0: routing to INT1 disabled; 1: routing to INT1 enabled)
	Enables routing FSM7 interrupt event to INT1. Default value: 0
INT1_FSM7 ⁽¹⁾	(0: routing to INT1 disabled; 1: routing to INT1 enabled)
	Enables routing FSM6 interrupt event to INT1. Default value: 0
INT1_FSM6 ⁽¹⁾	(0: routing to INT1 disabled; 1: routing to INT1 enabled)
INT1 FSM5 ⁽¹⁾	Enables routing FSM5 interrupt event to INT1. Default value: 0
	(0: routing to INT1 disabled; 1: routing to INT1 enabled)
	Enables routing FSM4 interrupt event to INT1. Default value: 0
INT1_FSM4 ⁽¹⁾	(0: routing to INT1 disabled; 1: routing to INT1 enabled)
INT1 FSM3 ⁽¹⁾	Enables routing FSM3 interrupt event to INT1. Default value: 0
	(0: routing to INT1 disabled; 1: routing to INT1 enabled)
INT1 FSM2 ⁽¹⁾	Enables routing FSM2 interrupt event to INT1. Default value: 0
	(0: routing to INT1 disabled; 1: routing to INT1 enabled)
INIT1 EQM1(1)	Enables routing FSM1 interrupt event to INT1. Default value: 0
INT1_FSM1 ⁽¹⁾	(0: routing to INT1 disabled; 1: routing to INT1 enabled)

Table 148. FSM_INT1 register description

1. This bit is active if the INT1_EMB_FUNC bit of MD1_CFG (1Fh) is set to 1.

10.9 MLC_INT1 (0Dh)

INT1 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT1. The pin's output supplies the OR combination of the selected signals.

Table	149.	MLC	_INT1	register
-------	------	-----	-------	----------

0 ⁽¹⁾ 0 ⁽¹⁾ 0 ⁽¹⁾ 0 ⁽¹⁾ INT1_MLC4 INT1_MLC3 INT1_MLC2 INT1_MLC1

1. This bit must be set to 0 for the correct operation of the device.

Table 150. MLC_INT1 register description

INT1_MLC4 ⁽¹⁾	Enables routing MLC4 interrupt event to INT1. Default value: 0 (0: routing to INT1 disabled; 1: routing to INT1 enabled)
INT1_MLC3 ⁽¹⁾	Enables routing MLC3 interrupt event to INT1. Default value: 0 (0: routing to INT1 disabled; 1: routing to INT1 enabled)
INT1_MLC2 ⁽¹⁾	Enables routing MLC2 interrupt event to INT1. Default value: 0 (0: routing to INT1 disabled; 1: routing to INT1 enabled)
INT1_MLC1 ⁽¹⁾	Enables routing MLC1 interrupt event to INT1. Default value: 0 (0: routing to INT1 disabled; 1: routing to INT1 enabled)

1. This bit is active if the INT1_EMB_FUNC bit of MD1_CFG (1Fh) is set to 1.

10.10 EMB_FUNC_INT2 (0Eh)

INT2 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT2. The pin's output supplies the OR combination of the selected signals.

Table 151. EMB_FUNC_INT2 register

INT2_ FSM_LC	0 ⁽¹⁾	INT2_ SIG_MOT	INT2_TILT	INT2_STEP _DET	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
-----------------	------------------	------------------	-----------	-------------------	------------------	------------------	------------------

1. This bit must be set to 0 for the correct operation of the device.

Table 152. EMB_FUNC_INT2 register description

INT2_FSM_LC ⁽¹⁾	Enables routing FSM long counter timeout interrupt event to INT2. Default value: 0 (0: routing to INT2 disabled; 1: routing to INT2 enabled)
INT2_SIG_MOT ⁽¹⁾	Enables routing significant motion event to INT2. Default value: 0 (0: routing to INT2 disabled; 1: routing to INT2 enabled)
INT2_TILT ⁽¹⁾	Enables routing tilt event to INT2. Default value: 0 (0: routing to INT2 disabled; 1: routing to INT2 enabled)
INT2_STEP_DETECT ⁽¹⁾	Enables routing pedometer step recognition event to INT2. Default value: 0 (0: routing to INT2 disabled; 1: routing to INT2 enabled)

1. This bit is active if the INT2_EMB_FUNC bit of MD2_CFG (20h) is set to 1.

10.11 FSM_INT2 (0Fh)

INT2 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT2. The pin's output supplies the OR combination of the selected signals.

Table 153. FSM_INT2 register

INT2_FSM8 INT2_FSM7 INT2_FSM6 INT2_	M5 INT2_FSM4 INT2_FSM3	INT2_FSM2 INT2_FSM1	
-------------------------------------	------------------------	---------------------	--

	Enables routing FSM8 interrupt event to INT2. Default value: 0
INT2_FSM8 ⁽¹⁾	
	(0: routing to INT2 disabled; 1: routing to INT2 enabled)
INT2_FSM7 ⁽¹⁾	Enables routing FSM7 interrupt event to INT2. Default value: 0
	(0: routing to INT2 disabled; 1: routing to INT2 enabled)
INT2_FSM6 ⁽¹⁾	Enables routing FSM6 interrupt event to INT2. Default value: 0
	(0: routing to INT2 disabled; 1: routing to INT2 enabled)
INT2_FSM5 ⁽¹⁾	Enables routing FSM5 interrupt event to INT2. Default value: 0
	(0: routing to INT2 disabled; 1: routing to INT2 enabled)
INT2_FSM4 ⁽¹⁾	Enables routing FSM4 interrupt event to INT2. Default value: 0
	(0: routing to INT2 disabled; 1: routing to INT2 enabled)
INT2_FSM3 ⁽¹⁾	Enables routing FSM3 interrupt event to INT2. Default value: 0
	(0: routing to INT2 disabled; 1: routing to INT2 enabled)
INT2_FSM2 ⁽¹⁾	Enables routing FSM2 interrupt event to INT2. Default value: 0
	(0: routing to INT2 disabled; 1: routing to INT2 enabled)
INT2_FSM1 ⁽¹⁾	Enables routing FSM1 interrupt eventton INT2. Default value: 0
	(0: routing to INT2 disabled; 1: routing to INT2 enabled)

Table 154. FSM_INT2 register description

1. This bit is active if the INT2_EMB_FUNC bit of MD2_CFG (20h) is set to 1.

10.12 MLC_INT2 (11h)

INT2 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT2. The pin's output supplies the OR combination of the selected signals.

Table	155.	MLC	INT2	register
-------	------	-----	------	----------

0 ⁽¹⁾ 0 ⁽¹⁾ 0 ⁽¹⁾ 0 ⁽¹⁾ INT2_MLC4 INT2_MLC3 INT2_MLC2 INT2_ML

1. This bit must be set to 0 for the correct operation of the device.

Table 156. MLC_INT2 register description

INT2_MLC4 ⁽¹⁾	Enables routing MLC4 interrupt event to INT2. Default value: 0 (0: routing to INT2 disabled; 1: routing to INT2 enabled)
INT2_MLC3 ⁽¹⁾	Enables routing MLC3 interrupt event to INT2. Default value: 0 (0: routing to INT2 disabled; 1: routing to INT2 enabled)
INT2_MLC2 ⁽¹⁾	Enables routing MLC2 interrupt event to INT2. Default value: 0 (0: routing to INT2 disabled; 1: routing to INT2 enabled)
INT2_MLC1 ⁽¹⁾	Enables routing MLC1 interrupt event to INT2. Default value: 0 (0: routing to INT2 disabled; 1: routing to INT2 enabled)

1. This bit is active if the INT2_EMB_FUNC bit of MD2_CFG (20h) is set to 1.

10.13 EMB_FUNC_STATUS (12h)

Embedded function status register (R)

Table 157. EMB_FUNC_STATUS register

	IS_FSM_LC	0	IS_SIGMOT	IS_TILT	IS_STEP_DET	0	0	0
--	-----------	---	-----------	---------	-------------	---	---	---

Table 158. EMB_FUNC_STATUS register description

IS_FSM_LC	Interrupt status bit for FSM long counter timeout interrupt event. (1: interrupt detected; 0: no interrupt)
IS_SIGMOT	Interrupt status bit for significant motion detection (1: interrupt detected; 0: no interrupt)
IS_TILT	Interrupt status bit for tilt detection (1: interrupt detected; 0: no interrupt)
IS_STEP_DET	Interrupt status bit for step detection (1: interrupt detected; 0: no interrupt)

10.14 FSM_STATUS (13h)

Finite state machine status register (R)

Table	159.	FSM_	STAT	ับร	register
-------	------	------	------	-----	----------

IS_FSM8 IS_FSM7 IS_FSM6 IS_FSM5 IS_FSM4 IS_FSM3 IS_FSM2 IS_FSM1

Table 160. FSM_STATUS register description

IS_FSM8	Interrupt status bit for FSM8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM7	Interrupt status bit for FSM7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM6	Interrupt status bit for FSM6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM5	Interrupt status bit for FSM5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM4	Interrupt status bit for FSM4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM3	Interrupt status bit for FSM3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM2	Interrupt status bit for FSM2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM1	Interrupt status bit for FSM1 interrupt event. (1: interrupt detected; 0: no interrupt)

10.15 MLC_STATUS (15h)

Machine learning core status register (R)

Table 161. MLC_STATUS register

0	0	0	0	IS_MLC4	IS_MLC3	IS_MLC	IS_MLC1

Table 162. MLC_STATUS register description

IS_MLC4	Interrupt status bit for MLC4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC3	Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC2	Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC1	Interrupt status bit for MLC1 interrupt event. (1: interrupt detected; 0: no interrupt)

10.16 PAGE_RW (17h)

Enable read and write mode of advanced features dedicated page (R/W)

Table 163. PAGE_RW register

FUNC UR	PAGE_ WRITE	PAGE_ READ	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0(1)
---------	----------------	---------------	------------------	------------------	------------------	------------------	------

1. This bit must be set to 0 for the correct operation of the device.

Table 164. PAGE_RW register description

EMB_FUNC_LIR	Latched interrupt mode for embedded functions. Default value: 0 (0: embedded functions interrupt request not latched; 1: embedded functions interrupt request latched)
PAGE_WRITE	Enable writes to the selected advanced features dedicated page. ⁽¹⁾ Default value: 0 (1: enable; 0: disable)
PAGE_READ	Enable reads from the selected advanced features dedicated page. ⁽¹⁾ Default value: 0 (1: enable; 0: disable)

1. Page selected by PAGE_SEL[3:0] in PAGE_SEL (02h) register.

10.17 EMB_FUNC_FIFO_EN (18h)

Embedded functions FIFO configuration register (R/W)

Table 165. EMB_FUNC_FIFO_EN register

0(1)	0(1)	0(1)	0(1)	FSM_FIFO_EN	MLC_FILTER_ FEATURE_FIFO _EN	MLC_ FIFO_EN	STEP_COUNTER _FIFO_EN
------	------	------	------	-------------	------------------------------------	-----------------	--------------------------

1. This bit must be set to 0 for the correct operation of the device.

Table 166. EMB_FUNC_FIFO_EN register description

FSM_FIFO_EN ⁽¹⁾	Enables batching finite state machine results in the FIFO buffer. Default value: 0 (0: disabled; 1: enabled)
MLC_FILTER_FEATURE_FIFO_EN ⁽¹⁾	Enables batching machine learning core filters and features in the FIFO buffer. Default value: 0 (0: disabled; 1: enabled)
MLC_FIFO_EN ⁽¹⁾	Enables batching machine learning core results in the FIFO buffer. Default value: 0 (0: disabled; 1: enabled)
STEP_COUNTER_FIFO_EN ⁽¹⁾	Enables batching step counter values in the FIFO buffer. Default value: 0 (0: disabled; 1: enabled)

1. When this bit is set to 1, the FIFO must be enabled in continuous mode.

10.18 FSM_ENABLE (1Ah)

Enable FSM register (R/W)

Table 167. FSM_ENABLE register

FSM8_EN FSM7_EN	FSM6_EN	FSM5_EN	FSM4_EN	FSM3_EN	FSM2_EN	FSM1_EN
-----------------	---------	---------	---------	---------	---------	---------

Table 168. FSM_ENABLE register description

FSM8_EN	Enables FSM8. Default value: 0 (0: FSM8 disabled; 1: FSM8 enabled)
FSM7_EN	Enables FSM7. Default value: 0 (0: FSM7 disabled; 1: FSM7 enabled)
FSM6_EN	Enables FSM6. Default value: 0 (0: FSM6 disabled; 1: FSM6 enabled)
FSM5_EN	Enables FSM5. Default value: 0 (0: FSM5 disabled; 1: FSM5 enabled)
FSM4_EN	Enables FSM4. Default value: 0 (0: FSM4 disabled; 1: FSM4 enabled)
FSM3_EN	Enables FSM3. Default value: 0 (0: FSM3 disabled; 1: FSM3 enabled)
FSM2_EN	Enables FSM2. Default value: 0 (0: FSM2 disabled; 1: FSM2 enabled)
FSM1_EN	Enables FSM1. Default value: 0 (0: FSM1 disabled; 1: FSM1 enabled)

10.19 FSM_LONG_COUNTER_L (1Ch) and FSM_LONG_COUNTER_H (1Dh)

FSM long counter status register (R/W)

Long counter value is an unsigned integer value (16-bit format).

Table 169. FSM_LONG_COUNTER_L register

FSM_LC_7 FSM_LC_6 FSM_LC_5 FSM_LC_4 FSM_LC_3 FSM_LC_2	FSM_LC_1 FSM_LC_0
---	-------------------

Table 170. FSM_LONG_COUNTER_L register description

FSM_LC_[7:0]	Long counter current value (LSbyte). Default value: 00000000
--------------	--

Table 171. FSM_LONG_COUNTER_H register

-	FSM_LC_14	FSM_LC_13	FSM_LC_12	FSM_LC_11	FSM_LC_10	FSM_LC_9	FSM_LC_8

Table 172. FSM_LONG_COUNTER_H register description

FSM_LC_[14:8]	Long counter current value (MSbyte). Default value: 00000000
---------------	--

INT_ACK_MASK (1Fh) 10.20

Reset status register (R/W)

Table 173. INT_ACK_MASK register

		IACK_ MASK7	IACK_ MASK6	IACK_ MASK5	IACK_ MASK4	IACK_ MASK3	IACK_ MASK2	IACK_ MASK1	IACK_ MASK0
--	--	----------------	----------------	----------------	----------------	----------------	----------------	----------------	----------------

	Table 174. INT_ACK_MASK register description
IACK_MASK7	If set to 1, when reading the EMB_FUNC_STATUS (12h) / EMB_FUNC_STATUS_MAINPAGE (34h), FSM_STATUS (13h) / FSM_STATUS_MAINPAGE (35h) and MLC_STATUS (15h) / MLC_STATUS_MAINPAGE (36h) registers in latched mode (when the EMB_FUNC_LIR bit is set to 1 in the PAGE_RW (17h) register), bit 7 of the status register is not reset. When this bit is set to 0, bit 7 of the status register is reset. Default value: 0
IACK_MASK6	If set to 1, when reading the EMB_FUNC_STATUS (12h) / EMB_FUNC_STATUS_MAINPAGE (34h), FSM_STATUS (13h) / FSM_STATUS_MAINPAGE (35h) and MLC_STATUS (15h) / MLC_STATUS_MAINPAGE (36h) registers in latched mode (when the EMB_FUNC_LIR bit is set to 1 in the PAGE_RW (17h) register), bit 6 of the status register is not reset. When this bit is set to 0, bit 6 of the status register is reset. Default value: 0
IACK_MASK5	If set to 1, when reading the EMB_FUNC_STATUS (12h) / EMB_FUNC_STATUS_MAINPAGE (34h), FSM_STATUS (13h) / FSM_STATUS_MAINPAGE (35h) and MLC_STATUS (15h) / MLC_STATUS_MAINPAGE (36h) registers in latched mode (when the EMB_FUNC_LIR bit is set to 1 in the PAGE_RW (17h) register), bit 5 of the status register is not reset. When this bit is set to 0, bit 5 of the status register is reset. Default value: 0
IACK_MASK4	If set to 1, when reading the EMB_FUNC_STATUS (12h) / EMB_FUNC_STATUS_MAINPAGE (34h), FSM_STATUS (13h) / FSM_STATUS_MAINPAGE (35h) and MLC_STATUS (15h) / MLC_STATUS_MAINPAGE (36h) registers in latched mode (when the EMB_FUNC_LIR bit is set to 1 in the PAGE_RW (17h) register), bit 4 of the status register is not reset. When this bit is set to 0, bit 4 of the status register is reset. Default value: 0
IACK_MASK3	If set to 1, when reading the EMB_FUNC_STATUS (12h) / EMB_FUNC_STATUS_MAINPAGE (34h), FSM_STATUS (13h) / FSM_STATUS_MAINPAGE (35h) and MLC_STATUS (15h) / MLC_STATUS_MAINPAGE (36h) registers in latched mode (when the EMB_FUNC_LIR bit is set to 1 in the PAGE_RW (17h) register), bit 3 of the status register is not reset. When this bit is set to 0, bit 3 of the status register is reset. Default value: 0
IACK_MASK2	If set to 1, when reading the EMB_FUNC_STATUS (12h) / EMB_FUNC_STATUS_MAINPAGE (34h), FSM_STATUS (13h) / FSM_STATUS_MAINPAGE (35h) and MLC_STATUS (15h) / MLC_STATUS_MAINPAGE (36h) registers in latched mode (when the EMB_FUNC_LIR bit is set to 1 in the PAGE_RW (17h) register), bit 2 of the status register is not reset. When this bit is set to 0, bit 2 of the status register is reset. Default value: 0
IACK_MASK1	If set to 1, when reading the EMB_FUNC_STATUS (12h) / EMB_FUNC_STATUS_MAINPAGE (34h), FSM_STATUS (13h) / FSM_STATUS_MAINPAGE (35h) and MLC_STATUS (15h) / MLC_STATUS_MAINPAGE (36h) registers in latched mode (when the EMB_FUNC_LIR bit is set to 1 in the PAGE_RW (17h) register), bit 1 of the status register is not reset. When this bit is set to 0, bit 1 of the status register is reset. Default value: 0
IACK_MASK0	If set to 1, when reading the EMB_FUNC_STATUS (12h) / EMB_FUNC_STATUS_MAINPAGE (34h), FSM_STATUS (13h) / FSM_STATUS_MAINPAGE (35h) and MLC_STATUS (15h) / MLC_STATUS_MAINPAGE (36h) registers in latched mode (when the EMB_FUNC_LIR bit is set to 1 in the PAGE_RW (17h) register), bit 0 of the status register is not reset. When this bit is set to 0, bit 0 of the status register is reset. Default value: 0

10.21 FSM_OUTS1 (20h)

FSM1 output register (R)

Table 175. FSM_OUTS1 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 176. FSM_OUTS1 register description

P_X	FSM1 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM1 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM1 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM1 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM1 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM1 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM1 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM1 output: negative event detected on the vector. (0: event not detected; 1: event detected)

10.22 FSM_OUTS2 (21h)

FSM2 output register (R)

Table 177. FSM_OUTS2 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 178. FSM_OUTS2 register description

P_X	FSM2 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM2 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM2 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM2 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM2 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM2 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM2 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM2 output: negative event detected on the vector. (0: event not detected; 1: event detected)

10.23 FSM_OUTS3 (22h)

FSM3 output register (R)

Table 179. FSM_OUTS3 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_		_	_	_	_

Table 180. FSM_OUTS3 register description

P_X	FSM3 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM3 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM3 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM3 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM3 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM3 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM3 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM3 output: negative event detected on the vector. (0: event not detected; 1: event detected)

10.24 FSM_OUTS4 (23h)

FSM4 output register (R)

Table 181. FSM_OUTS4 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 182. FSM_OUTS4 register description

P_X	FSM4 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM4 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM4 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM4 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM4 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM4 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM4 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM4 output: negative event detected on the vector. (0: event not detected; 1: event detected)

10.25 FSM_OUTS5 (24h)

FSM5 output register (R)

Table 183. FSM_OUTS5 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_		_	_	_	_

Table 184. FSM_OUTS5 register description

P_X	FSM5 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM5 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM5 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM5 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM5 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM5 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM5 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM5 output: negative event detected on the vector. (0: event not detected; 1: event detected)

10.26 FSM_OUTS6 (25h)

FSM6 output register (R)

Table 185. FSM_OUTS6 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 186. FSM_OUTS6 register description

P_X	FSM6 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM6 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM6 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM6 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM6 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM6 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM6 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM6 output: negative event detected on the vector. (0: event not detected; 1: event detected)

10.27 FSM_OUTS7 (26h)

FSM7 output register (R)

Table 187. FSM_OUTS7 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 188. FSM_OUTS7 register description

P_X	FSM7 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM7 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM7 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM7 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM7 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM7 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM7 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM7 output: negative event detected on the vector. (0: event not detected; 1: event detected)

10.28 FSM_OUTS8 (27h)

FSM8 output register (R)

Table 189. FSM_OUTS8 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 190. FSM_OUTS8 register description

P_X	FSM8 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM8 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM8 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM8 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM8 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM8 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM8 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM8 output: negative event detected on the vector. (0: event not detected; 1: event detected)

10.29 STEP_COUNTER_L (28h) and STEP_COUNTER_H (29h)

Step counter output register (R)

		Table	191. STEP_C	OUNTER_L re	gister		
STEP_7	STEP_6	STEP_5	STEP_4	STEP_3	STEP_2	STEP_1	STEP_0

Table 192. STEP_COUNTER_L register description

STEP_[7:0]	Step counter output (LSbyte)	
------------	------------------------------	--

Table 193. STEP_COUNTER_H register

	STEP_15	STEP_14	STEP_13	STEP_12	STEP_11	STEP_10	STEP_9	STEP_8
--	---------	---------	---------	---------	---------	---------	--------	--------

Table 194. STEP_COUNTER_H register description

STEP_[15:8]	Step counter output (MSbyte)	
-------------	------------------------------	--

10.30 EMB_FUNC_SRC (2Ah)

Embedded function source register (R/W)

Table 195. EMB_FUNC_SRC register

PEDO_ RST_STEP	0 ⁽¹⁾	STEP_ DETECTED	STEP_COUNT _DELTA_IA	STEP_ OVERFLOW	STEPCOUNTER _BIT_SET	0 ⁽¹⁾	0 ⁽¹⁾
-------------------	------------------	-------------------	-------------------------	-------------------	-------------------------	------------------	------------------

1. This bit must be set to 0 for the correct operation of the device.

Table 196. EMB_FUNC_SRC register description

PEDO_RST_STEP	Reset pedometer step counter. Read/write bit. (0: disabled; 1: enabled)
STEP_DETECTED	Step detector event detection status. Read-only bit. (0: step detection event not detected; 1: step detection event detected)
STEP_COUNT_DELTA_IA	Pedometer step recognition on delta time status. Read-only bit. (0: no step recognized during delta time; 1: at least one step recognized during delta time)
STEP_OVERFLOW	Step counter overflow status. Read-only bit. (0: step counter value < 2 ¹⁶ ; 1: step counter value reached 2 ¹⁶)
STEPCOUNTER_BIT_SET	This bit is equal to 1 when the step count is increased. If a timer period is programmed in PEDO_SC_DELTAT_L (AAh) and PEDO_SC_DELTAT_H (ABh) embedded advanced features (page 1) registers, this bit is kept to 0. Read-only bit.

10.31 EMB_FUNC_INIT_A (2Ch)

Embedded functions initialization register (R/W)

Table 197. EMB_FUNC_INIT_A register

MLC_BEFORE _FSM_INIT 0 ⁽¹⁾	SIG_MOT _INIT	TILT_INIT	STEP_DET _INIT	0 ⁽¹⁾	0(1)	0(1)
--	------------------	-----------	-------------------	------------------	------	------

1. This bit must be set to 0 for the correct operation of the device.

Table 198. EMB_FUNC_INIT_A register description

MLC_BEFORE_FSM_INIT	Machine learning core initialization request (MLC executed before FSM). Default value: 0
SIG_MOT_INIT	Significant motion detection algorithm initialization request. Default value: 0
TILT_INIT	Tilt algorithm initialization request. Default value: 0
STEP_DET_INIT	Pedometer step counter/detector algorithm initialization request. Default value: 0

10.32 EMB_FUNC_INIT_B (2Dh)

Embedded functions initialization register (R/W)

Table 199. EMB_FUNC_INIT_B register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	MLC_INIT	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	FSM_INIT

1. This bit must be set to 0 for the correct operation of the device.

Table 200. EMB_FUNC_INIT_B register description

MLC_INIT	Machine learning core initialization request (MLC executed after FSM). Default value: 0
FSM_INIT	FSM initialization request. Default value: 0

10.33 MLC1_SRC (34h)

Machine learning core source register (R)

Table 201. MLC1_SRC register

		_	_		MLC1_ SRC_2	MLC1_ SRC_1	MLC1_ SRC_0
--	--	---	---	--	----------------	----------------	----------------

Table 202. MLC1_SRC register description

MLC1_SRC_[7:0]	Output value of MLC1 decision tree
----------------	------------------------------------

10.34 MLC2_SRC (35h)

Machine learning core source register (R)

Table 203. MLC2_SRC register

MLC2_	MLC2_	MLC2_	MLC2_	MLC2_	MLCS2_	MLC2_	MLC2_
SRC_7	SRC_6	SRC_5	SRC_4	SRC_3	SRC_2	SRC_1	SRC_0

Table 204. MLC2_SRC register description

MLC2_SRC_[7:0]	Output value of MLC2 decision tree	
----------------	------------------------------------	--

10.35 MLC3_SRC (36h)

Machine learning core source register (R)

Table 205. MLC3_SRC register

MLC3_ MLC3_	MLC3_	MLC3_	MLC3_	MLC3_	MLC3_	MLC3_
SRC_7 SRC_6	SRC_5	SRC_4	SRC_3	SRC_2	SRC_1	SRC_0

Table 206. MLC3_SRC register description

MLC3_SRC_[7:0]	Output value of MLC3 decision tree

10.36 MLC4_SRC (37h)

Machine learning core source register (R)

Table 207. MLC4_SRC register

MLC4_ MLC4_	MLC4_	MLC4_	MLC4_	MLC4_	MLC4_	MLC4_
SRC_7 SRC_6	SRC_5	SRC_4	SRC_3	SRC_2	SRC_1	SRC_0

Table 208. MLC4_SRC register description

MLC4 SRC [7:0] Output value of MLC4 decision tree

10.37 FSM_ODR (39h)

Finite state machine output data rate configuration register (R/W)

Table 209. FSM_ODR register

0 ⁽¹⁾ 1 ⁽²⁾ FSM_ODR_2 FSM_ODR_1 FSM_ODR_0 0 ⁽¹⁾ 0 ⁽¹⁾ 0 ⁽¹⁾
--

1. This bit must be set to 0 for the correct operation of the device.

2. This bit must be set to 1 for the correct operation of the device.

Table 210. FSM_ODR register description

	Finite state machine ODR configuration:
	(000: 12.5 Hz;
	001: 25 Hz (default);
ESM ODD [2:0]	010: 50 Hz;
FSM_ODR_[2:0]	011: 100 Hz;
	100: 200 Hz;
	101: 400 Hz;
	110: 800 Hz)

10.38 MLC_ODR (3Ah)

Machine learning core output data rate configuration register (R/W)

Table 211. MLC_ODR register

0 ⁽¹⁾ MLC_ODR_2 MLC_ODR_1 MLC_ODR_0	0 ⁽¹⁾ 0 ⁽¹⁾	0 ⁽¹⁾	1 ⁽²⁾
--	-----------------------------------	------------------	-------------------------

1. This bit must be set to 0 for the correct operation of the device.

2. This bit must be set to 1 for the correct operation of the device.

Table 212. MLC_ODR register description

	Machine learning core ODR configuration:
	(000: 12.5 Hz;
	001: 25 Hz (default);
MLC_ODR_[2:0]	010: 50 Hz;
	011: 100 Hz;
	100: 200 Hz)

Note:

Embedded advanced features pages 11

The table given below provides a list of the registers for the embedded advanced features page 0. These registers are accessible when PAGE SEL[3:0] are set to 0000 in PAGE SEL (02h).

The content of these registers is loaded when the embedded functions are enabled by setting the EMB_FUNC_EN bit to 1 in the CTRL4 (13h) register. The embedded functions must be enabled in order for these registers to become accessible.

Name	Turno	Reg	ister address	Default	Comment
Name	Туре	Hex	Binary	Delault	Comment
FSM_LC_TIMEOUT_L	R/W	54	01010100	0000000	
FSM_LC_TIMEOUT_H	R/W	55	01010101	0000000	
FSM_PROGRAMS	R/W	56	01010110	0000000	
FSM_START_ADD_L	R/W	58	01011000	0000000	
FSM_START_ADD_H	R/W	59	01011001	0000000	
PEDO_CMD_REG	R/W	5D	01011101	0000000	
PEDO_DEB_STEPS_CONF	R/W	5E	01011110	00001010	
PEDO_SC_DELTAT_L	R/W	AA	10101010	0000000	
PEDO_SC_DELTAT_H	R/W	AB	10101011	0000000	
T_SENSITIVITY_L	R/W	B6	10110110	11010001	
T_SENSITIVITY_H	R/W	B7	10110111	00011001	
SMART_POWER_CTRL	R/W	D2	11010010	0000000	

Table 213. Register address map - embedded advanced features page 0

Reserved registers must not be changed. Writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

Write procedure example: write value 06h in register at address 5Eh (PEDO DEB STEPS CONF) in page 0

- 1. Write bit EMB_FUNC_REG_ACCESS = 1 in FUNC_CFG_ACCESS (3Fh) // Enable access to embedded functions
- 2. Write bit PAGE_WRITE = 1 in PAGE_RW (17h) register
- 3. Write 0000 in PAGE SEL[3:0] field of register PAGE SEL (02h)
- 4. Write 5Eh in PAGE_ADDRESS (08h) register
- 5. Write 06h in PAGE_VALUE (09h) register
- 6. Write bit PAGE WRITE = 0 in PAGE RW (17h) register
- 7. Write bit EMB_FUNC_REG_ACCESS = 0 in FUNC_CFG_ACCESS (3Fh) // Disable access to embedded functions
- registers
 - // Select write operation mode
 - // Select page 0
 - // Set address
 - // Set value to be written
 - // Write operation disabled
 - registers

Note:

Read procedure example: read value of register at address 5Eh (PEDO_DEB_STEPS_CONF) in page 0

1.	Write bit EMB_FUNC_REG_ACCESS = 1 in FUNC_CFG_ACCESS (3Fh)	// Enable access to embedded functions registers
2.	Write bit PAGE_READ = 1 in PAGE_RW (17h) register	// Select read operation mode
3.	Write 0000 in PAGE_SEL[3:0] field of register PAGE_SEL (02h)	// Select page 0
4.	Write 5Eh in PAGE_ADDRESS (08h) register	// Set address
5.	Read value of PAGE_VALUE (09h) register	// Get register value
6.	Write bit PAGE_READ = 0 in PAGE_RW (17h) register	// Read operation disabled
7.	Write bit EMB_FUNC_REG_ACCESS = 0 in FUNC_CFG_ACCESS (3Fh)	<pre>// Disable access to embedded functions registers</pre>

Steps 1 and 2 of both procedures are intended to be performed at the beginning of the procedure. Steps 6 and 7 of both procedures are intended to be performed at the end of the procedure. If the procedure involves multiple operations, only steps 3, 4 and 5 must be repeated for each operation. If, in particular, the multiple operations involve consecutive registers, only step 5 can be performed.

DS14071 - Rev

12 Embedded advanced features register description

12.1 Page 0 - embedded advanced features registers

12.1.1 FSM_LC_TIMEOUT_L (54h) and FSM_LC_TIMEOUT_H (55h)

FSM long counter timeout register (R/W)

The long counter timeout value is an unsigned integer value (16-bit format). When the long counter value reached this value, the FSM generates an interrupt.

Table 214. FSM_LC_TIMEOUT_L register

Table 215. FSM_LC_TIMEOUT_L register description

FSM_LC_TIMEOUT[7:0]	FSM long counter timeout value (LSbyte). Default value: 00000000
---------------------	--

Table 216. FSM_LC_TIMEOUT_H register

FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_
TIMEOUT15	TIMEOUT14	TIMEOUT13	TIMEOUT12	TIMEOUT11	TIMEOUT10	TIMEOUT9	TIMEOUT8
			TIVILOUTIZ	TIVILOUTTI			

Table 217. FSM_LC_TIMEOUT_H register description

FSM_LC_TIMEOUT[15:8] FSM long counter timeout value (MSbyte). Default value: 00000000	
---	--

12.1.2 FSM_PROGRAMS (56h)

FSM number of programs register (R/W)

Table 218. FSM_PROGRAMS register

FSM_N_ FSM_	 FSM_N_	FSM_N_	FSM_N_	FSM_N_	FSM_N_
PROG7 PRO	PROG4	PROG3	PROG2	PROG1	PROG0

Table 219. FSM_PROGRAMS register description

FSM N PROGI7:01	Number of FSM programs; must be less than or equal to 8.
	Default value: 00000000

12.1.3 FSM_START_ADD_L (58h) and FSM_START_ADD_H (59h)

FSM start address register (R/W). First available address is 0x19C.

Table 220. FSM_START_ADD_L register

FSM_	FSM_ FSM_	FSM_	FSM_	FSM_	FSM_	FSM_	
START7	START6 START5	START4	START3	START2	START1	START0	

Table 221. FSM_START_ADD_L register description

FSM_START[7:0]	FSM start address value (LSbyte). Default value: 00000000
----------------	---

Table 222. FSM_START_ADD_H register

FSM_	FSM_	FSM_	FSM_	FSM_	FSM_	FSM_	FSM_
START15	START14	START13	START12	START11	START10	START9	START8

Table 223. FSM_START_ADD_H register description

FSM_START[15:8]	FSM start address value (MSbyte). Default value: 00000000
-----------------	---

12.1.4 PEDO_CMD_REG (5Dh)

Pedometer configuration register (R/W)

Table 224. PEDO_CMD_REG register

0 ⁽¹⁾	O ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	CARRY_ COUNT_EN	FP_ REJECTION_EN	O ⁽¹⁾	0 ⁽¹⁾
------------------	------------------	------------------	------------------	--------------------	---------------------	-------------------------	------------------

1. This bit must be set to 0 for the correct operation of the device.

Table 225. PEDO_CMD_REG register description

CARRY_COUNT_EN	Set when user wants to generate interrupt only on count overflow event.
FP_REJECTION_EN ⁽¹⁾	Enables the false-positive rejection feature

1. This bit is active if the MLC_EN bit of EMB_FUNC_EN_B (05h) or the MLC_BEFORE_FSM_EN bit in the EMB_FUNC_EN_A (04h) register is set to 1.

12.1.5 PEDO_DEB_STEPS_CONF (5Eh)

Pedometer debounce configuration register (R/W)

Table 226. PEDO_DEB_STEPS_CONF register

| DEB_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| STEP7 | STEP6 | STEP5 | STEP4 | STEP3 | STEP2 | STEP1 | STEP0 |
| - | | | - | | | | |

Table 227. PEDO_DEB_STEPS_CONF register description

DEB_STEP[7:0]	Debounce threshold. Minimum number of steps to increment the step counter (debounce). Default value: 00001010
---------------	---

12.1.6 PEDO_SC_DELTAT_L (AAh) and PEDO_SC_DELTAT_H (ABh)

Time period register for step detection on delta time (R/W)

Table 228. PEDO_SC_DELTAT_L register

	PD_SC_7	PD_SC_6	PD_SC_5	PD_SC_4	PD_SC_3	PD_SC_2	PD_SC_1	PD_SC_0
--	---------	---------	---------	---------	---------	---------	---------	---------

Table 229. PEDO_SC_DELTAT_H register

PD_SC_15	PD_SC_14	PD_SC_13	PD_SC_12	PD_SC_11	PD_SC_10	PD_SC_9	PD_SC_8

Table 230. PEDO_SC_DELTAT_H/L register description

PD_SC_[15:0]	Time period value (1LSB = 2.56 ms)	
--------------	------------------------------------	--

12.1.7 T_SENSITIVITY_L (B6h) and T_SENSITIVITY_H (B7h)

Temperature sensor sensitivity value register (R/W)

This sensitivity value is also applied to the data processed in the finite state machine (FSM) and machine learning core (MLC) blocks.

The default value of T_S_[15:0] is 0x19D1, this value corresponds to 0.045°C/LSB with 12-bit resolution.

Table 231. T_SENSITIVITY_L register

T_S_7	T_S_6	T_S_5	T_S_4	T_S_3	T_S_2	T_S_1	T_S_0

Table 232. T_SENSITIVITY_L register description

T_S_[7:0]	Temperature sensor sensitivity (LSbyte). Default value: 11010001
-----------	--

Table 233. T_SENSITIVITY_H register

T_S_15	T_S_14	T_S_13	T_S_12	T_S_11	T_S_10	T_S_9	T_S_8
--------	--------	--------	--------	--------	--------	-------	-------

Table 234. T_SENSITIVITY_H register description

T_S_[15:8]	Temperature sensor sensitivity (MSbyte). Default value: 00011001	
------------	--	--

12.1.8 SMART_POWER_CTRL (D2h)

Smart power management configuration register (R/W)

Table 235. SMART_POWER_CTRL register

| SMART_POWER |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| _CTRL_DUR3 | _CTRL_DUR2 | _CTRL_DUR1 | _CTRL_DUR0 | _CTRL_WIN3 | _CTRL_WIN2 | _CTRL_WIN1 | _CTRL_WIN0 |

Table 236. SMART_POWER_CTRL register description

SMART_POWER_CTRL_DUR[3:0]	Setting of the value of the duration threshold for the smart power management feature. The actual value is the value of the ODR time multiplied by SMART_POWER_CTRL_DUR[3:0] / 16.
SMART_POWER_CTRL_WIN[3:0]	Setting of the number of consecutive windows during which the smart power management feature is evaluated. The actual number is SMART_POWER_CTRL_WIN[3:0] * 16.

13 Package information

To meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

13.1 Soldering information

The LGA package is compliant with the ECOPACK and RoHS standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020. For the land pattern and soldering recommendations, consult technical note TN0018 available on www.st.com.

13.2 LGA-12L package information

Figure 19. LGA-12L 2.0 x 2.0 x 0.74 mm package outline and mechanical data

Dimensions are in millimeter unless otherwise specified. General Tolerance is +/-0.1mm unless otherwise specified.

OUTER DIMENSIONS

ITEM	DIMENSION [mm]	TOLERANCE [mm]
Length [L]	2	±0.1
Width [W]	2	±0.1
Height [H]	0.74 MAX	/

DM00794797_1

Revision history

Date	Version	Changes
09-Nov-2022	2	Minor textual updates
		Updated Features
		Added footnote ⁽²⁾ in Table 3. Electrical characteristics
		Updated SPI clock period in Table 5. SPI slave timing values
		Added footnote to INT1_ON_RES bit in CTRL1 (10h)
		Added footnote to HP_EN bit in CTRL3 (12h)
		Added footnote to BDU bit in CTRL4 (13h)
18-Oct-2023	3	Updated STATUS (25h)
		Added T_DIS bit to SELF_TEST (32h)
		Updated FUNC_CFG_ACCESS (3Fh)
		Added footnote to Table 131. TIMESTAMP output register description
		Updated register EMB_FUNC_SRC (2Ah) in Table 132. Register address map - embedded functions
		Updated description of PAGE_SEL[3:0] bits in PAGE_SEL (02h)
		Added footnote to bits in EMB_FUNC_FIFO_EN (18h)
		Added external clock function to pin 7
		Updated Section 3: Functionality
	4	Added Section 3.4: Accelerometer filtering chain
05-Apr-2024		Updated Section 3.5: Interrupt event recognition
		Added EXT_CLK_CFG (08h)
		Renamed EN_DEVICE_CONFIG (3Eh)
		Updated title of TIMESTAMP0 (7Ah), TIMESTAMP1 (7Bh), TIMESTAMP2 (7Ch), and TIMESTAMP3 (7Dh)
		Updated SDI input setup time in Table 5. SPI slave timing values
		Updated SCL clock high time in Table 6. I ² C slave timing values
		Updated Section 3.3.1.1: I ² C/I3C interfaces
		Minor textual updates in Section 5.1: FIFO and subsections
		Added footnote (2) to Table 17. MIPI I3C® CCC commands
23-Sep-2024	5	Updated description of EXT_CLK_EN bit in EXT_CLK_CFG (08h)
		Updated bit 7 in CTRL1 (10h)
		Updated first available address in FSM_START_ADD_L (58h) and
		FSM_START_ADD_H (59h)
		Updated Table 230. PEDO_SC_DELTAT_H/L register description
		Added register SMART_POWER_CTRL (D2h)
24-Oct-2024	6	Updated Table 7. Absolute maximum ratings
26-Mar-2025	7	Updated supply current in Table 3. Electrical characteristics
20 1001-2020	,	Updated bit 5 in FIFO_CTRL (15h)

Table 237. Document revision history

Contents

1	Bloc	ck diagr	ram and pin description	3
	1.1	Block	diagram	3
	1.2	Pin de	escription	4
2	Мес	hanical	and electrical specifications	6
	2.1		anical characteristics	
	2.2	Electri	ical characteristics	7
	2.3	Tempe	erature sensor characteristics	7
	2.4	Comm	nunication interface characteristics	8
		2.4.1	SPI - serial peripheral interface	8
		2.4.2	I ² C - inter-IC control interface	
	2.5	Absolu	ute maximum ratings	
	2.6	Termir	nology	
		2.6.1	Sensitivity	
		2.6.2	Zero-g level offset	
3	Fun	ctionali	ty	13
	3.1	Opera	ting modes	13
	3.2	One-s	hot modes	13
	3.3	Power	r-up sequence	13
		3.3.1	Power-up command	14
		3.3.2	Soft power-off command	
		3.3.3	Deep power-off command	14
	3.4	Accele	erometer filtering chain	15
	3.5	Interru	upt event recognition	
	3.6	Accele	erometer self-test	
	3.7	Tempe	erature sensor	
4	Арр	lication	hints	17
5	Digi	tal mair	n blocks and embedded low-power features	
	5.1	FIFO .		
		5.1.1	Bypass mode	
		5.1.2	FIFO mode	
		5.1.3	Continuous mode	
		5.1.4	Continuous-to-FIFO mode.	20
		5.1.5	Bypass-to-continuous mode	
		5.1.6	Bypass-to-FIFO.	
		5.1.7	FIFO reading procedure	21

LIS2DUX12 Contents

		5.1.8	FIFO empty condition	21
	5.2	Activity/	/inactivity, Android stationary/motion detection functions	
	5.3	Pedome	eter functions: step detector and step counters	
	5.4	Pedome	eter algorithm	
	5.5	Tilt dete	ection	
	5.6	Significa	ant motion detection	
	5.7	Finite st	tate machine	
	5.8	Machine	e learning core	
	5.9	Adaptiv	e self-configuration (ASC)	
6	Digita	al interf	aces	
	6.1	I ² C seria	al interface	
		6.1.1	I ² C operation	
	6.2	SPI bus	s interface	
		6.2.1	SPI read	30
		6.2.2	SPI write	31
		6.2.3	SPI read in 3-wire mode	32
	6.3	MIPI 130	C [®] interface	
		6.3.1	MIPI I3C [®] slave interface	
		6.3.2	MIPI I3C [®] CCC supported commands	34
		6.3.3	Antispike filter management on mixed I ² C/MIPI I3C [®] bus	
7	Regis	ster maj	pping	
8	Regis	ster des	cription	
	8.1	EXT_C	LK_CFG (08h)	
	8.2	PIN_CT	rRL (0Ch)	
	8.3		_UP_DUR_EXT (0Eh)	
	8.4	WHO A		
	8.5	_	(10h)	
	8.6		(11h)	
	8.7		(12h)	
	8.8		(13h)	
	8.9		(14h)	
	8.10		CTRL (15h)	
	8.11		VTM (16h)	
	8.12	_	RUPT_CFG (17h)	
	8.13		l8h)	
	8.14		_UP_THS (1Ch)	
		_		

LIS2DUX12 Contents

8.15	WAKE_UP_DUR (1Dh)	. 47
8.16	FREE_FALL (1Eh)	. 47
8.17	MD1_CFG (1Fh)	. 48
8.18	MD2_CFG (20h)	. 48
8.19	WAKE_UP_SRC (21h)	. 49
8.20	TAP_SRC (22h)	. 50
8.21	SIXD_SRC (23h)	. 50
8.22	ALL_INT_SRC (24h)	. 51
8.23	STATUS (25h)	. 51
8.24	FIFO_STATUS1 (26h)	. 52
8.25	FIFO_STATUS2 (27h)	. 52
8.26	OUT_X_L (28h)	. 52
8.27	OUT_X_H (29h)	. 52
8.28	OUT_Y_L (2Ah)	. 53
8.29	OUT_Y_H (2Bh)	. 53
8.30	OUT_Z_L (2Ch)	. 53
8.31	OUT_Z_H (2Dh)	. 53
8.32	OUT_T_L (2Eh)	. 54
8.33	OUT_T_H (2Fh)	. 54
8.34	SELF_TEST (32h)	. 55
8.35	I3C_IF_CTRL (33h)	. 55
8.36	EMB_FUNC_STATUS_MAINPAGE (34h)	. 55
8.37	FSM_STATUS_MAINPAGE (35h)	. 56
8.38	MLC_STATUS_MAINPAGE (36h)	. 56
8.39	SLEEP (3Dh)	. 56
8.40	EN_DEVICE_CONFIG (3Eh)	. 57
8.41	FUNC_CFG_ACCESS (3Fh)	
8.42	FIFO_DATA_OUT_TAG (40h)	. 58
8.43	FIFO_DATA_OUT_X_L (41h) and FIFO_DATA_OUT_X_H (42h)	. 59
8.44	FIFO_DATA_OUT_Y_L (43h) and FIFO_DATA_OUT_Y_H (44h)	. 59
8.45	FIFO_DATA_OUT_Z_L (45h) and FIFO_DATA_OUT_Z_H (46h)	. 59
8.46	FIFO_BATCH_DEC (47h)	. 60
8.47	TAP_CFG0 (6Fh)	
8.48	TAP_CFG1 (70h)	. 61
8.49	TAP_CFG2 (71h)	. 62
8.50	TAP_CFG3 (72h)	. 62

	8.51	TAP_CFG4 (73h)	. 62
	8.52	TAP_CFG5 (74h)	. 63
	8.53	TAP_CFG6 (75h)	. 63
	8.54	TIMESTAMP0 (7Ah), TIMESTAMP1 (7Bh), TIMESTAMP2 (7Ch), and TIMESTAMP3	
		(7Dh)	
9		edded functions register mapping	
10	Embe	edded functions register description	
	10.1	PAGE_SEL (02h)	
	10.2	EMB_FUNC_EN_A (04h)	
	10.3	EMB_FUNC_EN_B (05h)	
	10.4	EMB_FUNC_EXEC_STATUS (07h)	
	10.5	PAGE_ADDRESS (08h)	
	10.6	PAGE_VALUE (09h)	. 69
	10.7	EMB_FUNC_INT1 (0Ah)	. 69
	10.8	FSM_INT1 (0Bh)	
	10.9	MLC_INT1 (0Dh)	
	10.10	EMB_FUNC_INT2 (0Eh)	.71
	10.11	FSM_INT2 (0Fh)	. 72
	10.12	MLC_INT2 (11h)	. 73
	10.13	EMB_FUNC_STATUS (12h)	. 73
	10.14	FSM_STATUS (13h)	. 74
	10.15	MLC_STATUS (15h)	. 74
	10.16	PAGE_RW (17h)	.75
	10.17	EMB_FUNC_FIFO_EN (18h)	. 75
	10.18	FSM_ENABLE (1Ah)	. 76
	10.19	FSM_LONG_COUNTER_L (1Ch) and FSM_LONG_COUNTER_H (1Dh)	. 76
	10.20	INT_ACK_MASK (1Fh).	. 77
	10.21	FSM_OUTS1 (20h)	. 78
	10.22	FSM_OUTS2 (21h)	. 78
	10.23	FSM_OUTS3 (22h)	. 79
	10.24	FSM_OUTS4 (23h)	. 79
	10.25	FSM_OUTS5 (24h)	. 80
	10.26	FSM_OUTS6 (25h)	. 80
	10.27	FSM_OUTS7 (26h)	. 81
	10.28	FSM_OUTS8 (27h)	. 81
	10.29	STEP_COUNTER_L (28h) and STEP_COUNTER_H (29h)	. 82

	10.20		UNC_SRC (2Ah)	00	
		_			
			UNC_INIT_A (2Ch)		
			UNC_INIT_B (2Dh)		
	10.33	MLC1_	SRC (34h)		
	10.34	MLC2_	SRC (35h)		
	10.35	MLC3_	SRC (36h)		
	10.36	MLC4_	SRC (37h)		
	10.37	FSM_O	DR (39h)		
	10.38	MLC_O	DR (3Ah)		
11	Embe	edded a	dvanced features pages	86	
12	Embedded advanced features register description				
	12.1	Page 0	- embedded advanced features registers		
		12.1.1	FSM_LC_TIMEOUT_L (54h) and FSM_LC_TIMEOUT_H (55h)	88	
		12.1.2	FSM_PROGRAMS (56h)	88	
		12.1.3	FSM_START_ADD_L (58h) and FSM_START_ADD_H (59h)	89	
		12.1.4	PEDO_CMD_REG (5Dh)	89	
		12.1.5	PEDO_DEB_STEPS_CONF (5Eh)	90	
		12.1.6	PEDO_SC_DELTAT_L (AAh) and PEDO_SC_DELTAT_H (ABh)	90	
		12.1.7	T_SENSITIVITY_L (B6h) and T_SENSITIVITY_H (B7h)	91	
		12.1.8	SMART_POWER_CTRL (D2h)	91	
13	Packa	age info	prmation	92	
	13.1	Solderin	ng information		
	13.2	LGA-12	L package information		
Revi	ision h	nistory .			
List	of tab	les			
List	Singu				

List of tables

Table 1.	Pin description.	. 5
Table 2.	Mechanical characteristics	. 6
Table 3.	Electrical characteristics	. 7
Table 4.	Temperature sensor characteristics	. 7
Table 5.	SPI slave timing values.	. 8
Table 6.	I ² C slave timing values	10
Table 7.	Absolute maximum ratings	11
Table 8.	Configuration of duration of interrupt.	16
Table 9.	Internal pin status	18
Table 10.	Serial interface pin description	27
Table 11.	I ² C terminology	27
Table 12.	SAD+read/write patterns.	28
Table 13.	Transfer when master is writing one byte to slave.	28
Table 14.	Transfer when master is writing multiple bytes to slave	28
Table 15.	Transfer when master is receiving (reading) one byte of data from slave	28
Table 16.	Transfer when master is receiving (reading) multiple bytes of data from slave	28
Table 17.	MIPI I3C [®] CCC commands	
Table 18.	Register map.	
Table 19.	EXT_CLK_CFG register	
Table 20.	EXT_CLK_CFG register description	
Table 21.	Table 20. PIN_CTRL register	
Table 22.	PIN_CTRL register description	
Table 23.	WAKE_UP_DUR_EXT register	
Table 24.	WAKE_UP_DUR_EXT register description	
Table 25.	WHO_AM_I register default values.	
Table 26.	CTRL1 register	
Table 27.	CTRL1 register description	
Table 28.	CTRL2 register	
Table 29.	CTRL2 register description	
Table 30.	CTRL3 register	
Table 31.	CTRL3 register description	
Table 32.	CTRL4 register	
Table 33.	CTRL4 register description	
Table 34.	ODR frequency in inactivity state	
Table 35.	CTRL5 register	
Table 36.	CTRL5 register description	
Table 37.	Operating modes	
Table 38.	Bandwidth selection (low-power mode with ODR < 50 Hz).	
Table 39.	Full-scale selection	
Table 40.	FIFO CTRL register description	44
Table 41.	Selection of FIFO mode	
Table 42.	FIFO WTM register	
Table 43.	FIFO_WTM register description	
Table 44.		
Table 45.	INTERRUPT CFG register description	
Table 46.	SIXD register	
Table 47.	SIXD register description	
Table 48.	WAKE_UP_THS register.	
Table 49.	WAKE_UP_THS register description	
Table 50.	WAKE_UP_DUR register	
Table 51.	WAKE_UP_DUR register description	
Table 52.	FREE_FALL register	
Table 53.	FREE_FALL register description	
	_ v !	

Table 54.	MD1_CFG register
Table 55.	MD1_CFG register description
Table 56.	MD2_CFG register
Table 57.	MD2_CFG register description
Table 58.	WAKE_UP_SRC register
Table 59.	WAKE_UP_SRC register description
Table 60.	TAP_SRC register 50
Table 61.	TAP_SRC register description
Table 62.	SIXD_SRC register
Table 63.	SIXD_SRC register description
Table 64.	ALL_INT_SRC register
Table 65.	ALL_INT_SRC register description
Table 66.	STATUS register
Table 67.	STATUS register description
Table 68.	FIFO_STATUS1 register
Table 69.	FIFO_STATUS1 register description
Table 70.	FIFO_STATUS2 register
Table 71.	FIFO_STATUS2 register description
Table 72.	OUT_X_L register
Table 73.	OUT_X_L register description
Table 74.	OUT_X_H register
Table 75.	OUT_X_H register description
Table 76.	OUT_Y_L register
Table 77.	OUT_Y_L register description
Table 78.	OUT_Y_H register
Table 79.	OUT_Y_H register description
Table 80.	OUT_Z_L register
Table 81.	OUT_Z_L register description
Table 82.	OUT_Z_H register
Table 83.	OUT_Z_H register description
Table 84.	OUT_T_L register
Table 85.	OUT_T_L register description
Table 86.	OUT_T_H register
Table 87.	OUT_T_H register description
Table 88.	SELF_TEST register
Table 89.	SELF_TEST register description
Table 90.	I3C_IF_CTRL register
Table 91.	I3C_IF_CTRL register description
Table 92.	EMB_FUNC_STATUS_MAINPAGE register
Table 93.	EMB_FUNC_STATUS_MAINPAGE register description
Table 94.	FSM_STATUS_MAINPAGE register
Table 95.	FSM_STATUS_MAINPAGE register description
Table 96.	MLC_STATUS_MAINPAGE register
Table 97.	MLC_STATUS_MAINPAGE register description
Table 98.	SLEEP register
Table 99.	SLEEP register description
Table 100.	EN_DEVICE_CONFIG register
Table 101.	EN_DEVICE_CONFIG register description
Table 102.	FUNC_CFG_ACCESS register
	FUNC_CFG_ACCESS register description
Table 104.	FIFO_DATA_OUT_TAG register
	FIFO_DATA_OUT_TAG register description
Table 106.	Identification of sensor in FIFO
Table 107.	FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L registers
Table 108.	FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register description

57

	FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers	
	FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register description	
	FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers	
	FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L register description	
	FIFO_BATCH_DEC register	
	FIFO_BATCH_DEC register description 6	
Table 115.	Accelerometer batch data rate	0
	TAP_CFG0 register	
Table 117.	TAP_CFG0 register description	1
	TAP_CFG1 register	
Table 119.	TAP_CFG1 register description	1
Table 120.	TAP_CFG2 register	2
Table 121.	TAP_CFG2 register description	2
Table 122.	TAP_CFG3 register	2
Table 123.	TAP_CFG3 register description	2
Table 124.	TAP_CFG4 register	2
Table 125.	TAP_CFG4 register description	2
Table 126.	TAP_CFG5 register	3
Table 127.	TAP_CFG5 register description	3
Table 128.	TAP_CFG6 register	3
Table 129.	TAP_CFG6 register description	3
Table 130.	TIMESTAMP output registers	4
Table 131.	TIMESTAMP output register description	4
	Register address map - embedded functions	
	PAGE_SEL register	
	PAGE_SEL register description	
	EMB_FUNC_EN_A register	
	EMB_FUNC_EN_A register description	
	EMB_FUNC_EN_B register	
	EMB_FUNC_EN_B register description	
	EMB_FUNC_EXEC_STATUS register	
	EMB_FUNC_EXEC_STATUS register description	
	PAGE_ADDRESS register	
	PAGE ADDRESS register description	
	PAGE_VALUE register	
	PAGE_VALUE register description	
	EMB_FUNC_INT1 register	
	EMB_FUNC_INT1 register description	
	FSM_INT1 register	
	FSM_INT1 register description	
	MLC_INT1 register	
	MLC_INT1 register description	
	EMB_FUNC_INT2 register	
	EMB FUNC INT2 register description	
	FSM_INT2 register.	
	FSM_INT2 register description	
	MLC_INT2 register	
	MLC_INT2 register description	
	EMB_FUNC_STATUS register	
	EMB_FUNC_STATUS register description.	
	FSM_STATUS register	
	FSM_STATUS register description	
	MLC_STATUS register	
	MLC_STATUS register description	
	PAGE RW register	
10010 103.		J

	PAGE_RW register description	
	EMB_FUNC_FIFO_EN register	
	EMB_FUNC_FIFO_EN register description	
	FSM_ENABLE register	
	FSM_ENABLE register description	
	FSM_LONG_COUNTER_L register	
	FSM_LONG_COUNTER_L register description	
	FSM_LONG_COUNTER_H register	
	FSM_LONG_COUNTER_H register description	
	INT_ACK_MASK register	
	INT_ACK_MASK register description	
	FSM_OUTS1 register	
	FSM_OUTS1 register description	
	FSM_OUTS2 register	
Table 178.	FSM_OUTS2 register description	'8
	FSM_OUTS3 register	
	FSM_OUTS3 register description	
	FSM_OUTS4 register	
	FSM_OUTS4 register description	
Table 183.	FSM_OUTS5 register	30
Table 184.	FSM_OUTS5 register description	30
Table 185.	FSM_OUTS6 register	30
Table 186.	FSM_OUTS6 register description	30
Table 187.	FSM_OUTS7 register	31
Table 188.	FSM_OUTS7 register description	31
Table 189.	FSM_OUTS8 register	31
Table 190.	FSM_OUTS8 register description	31
Table 191.	STEP_COUNTER_L register	32
Table 192.	STEP_COUNTER_L register description	32
Table 193.	STEP_COUNTER_H register	32
	STEP_COUNTER_H register description	
Table 195.	EMB_FUNC_SRC register	32
	EMB_FUNC_SRC register description	
	EMB FUNC INIT A register	
	EMB_FUNC_INIT_A register description.	
	EMB_FUNC_INIT_B register	
	EMB_FUNC_INIT_B register description.	
	MLC1_SRC register	
	MLC1_SRC register description.	
	MLC2_SRC register	
	MLC2_SRC register description	
	MLC3 SRC register	
	MLC3_SRC register description	
	MLC4_SRC register	
	MLC4 SRC register description	
	FSM_ODR register	
	FSM ODR register description	
	MLC_ODR register	
	MLC_ODR register description	
	Register address map - embedded advanced features page 0	
	FSM_LC_TIMEOUT_L register	
	FSM_LC_TIMEOUT_L register description	
	FSM_LC_TIMEOUT_H register	
	FSM_LC_TIMEOUT_H register description	
	FSM_PROGRAMS register	
10010 £ 10.		<i>,</i> 0

LIS2DUX12 List of tables

Table 219.	FSM_PROGRAMS register description.	88
	FSM_START_ADD_L register	
Table 221.	FSM_START_ADD_L register description	89
	FSM_START_ADD_H register.	
Table 223.	FSM_START_ADD_H register description.	89
	PEDO_CMD_REG register	
	PEDO_CMD_REG register description	
	PEDO_DEB_STEPS_CONF register	
	PEDO_DEB_STEPS_CONF register description	
Table 228.	PEDO_SC_DELTAT_L register	90
	PEDO_SC_DELTAT_H register	
	PEDO_SC_DELTAT_H/L register description.	
Table 231.	T_SENSITIVITY_L register	91
	T_SENSITIVITY_L register description	
	T_SENSITIVITY_H register.	
Table 234.	T_SENSITIVITY_H register description.	91
Table 235.	SMART_POWER_CTRL register	91
Table 236.	SMART_POWER_CTRL register description	91
	Document revision history	

List of figures

Figure 1.	Block diagram	. 3
Figure 2.	Pin connections	. 4
Figure 3.	SPI slave timing in mode 0	. 8
Figure 4.	SPI slave timing in mode 3	. 9
Figure 5.	I ² C slave timing diagram	10
Figure 6.	Power-up sequence	13
Figure 7.	Accelerometer filtering chain	15
Figure 8.	LIS2DUX12 electrical connections (top view)	17
Figure 9.	Four-stage pedometer algorithm	23
Figure 10.	Generic state machine	24
Figure 11.	State machine in the LIS2DUX12	25
Figure 12.	Machine learning core in the LIS2DUX12	25
Figure 13.	Read and write protocol	29
Figure 14.	SPI read protocol	30
Figure 15.	Multiple byte SPI read protocol (2-byte example).	30
Figure 16.	SPI write protocol	31
Figure 17.	Multiple byte SPI write protocol (2-byte example)	
Figure 18.	SPI read protocol in 3-wire mode	32
Figure 19.	LGA-12L 2.0 x 2.0 x 0.74 mm package outline and mechanical data	92

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved