

Part No. 1000424

On Ground BT / Wi-Fi Dual Band Stamped Metal Antenna

2.4 / 4.9 / 5.2 / 5.8 GHz (802.11 a/b/g/n/c + Japan)

Supports: Wi-Fi applications, Agriculture, Bluetooth, Zigbee, WLAN, Smart Home, Healthcare, Digital Signage

On Ground BT / Wi-Fi Dual Band **Stamped Metal Antenna**

2.4 GHz: 5 GHz

KEY BENEFITS

Stay-in-Tune

KYOCERA AVX antenna technology provides superior RF field containment, resulting in less interaction with surrounding components.

Quicker Time-to-Market

By optimizing antenna size, performance and emissions, customer and regulatory specifications are more easily met.

Environmental Compliance

Comply with latest RoHS requirements

APPLICATIONS

- Embedded Telematics design
 - Tracking
- Cellular. Headsets, • M2M, Tablets
 - Healthcare Industrial
- Gateway, Access
- devices **Smart Grid** OBD-II
- Point Handheld

KYOCERA AVX WLAN antennas deliver on the key needs of device designers for higher functionality and performance in smaller/thinner designs. This innovative antenna provides outstanding performance for 2.4 GHz and 5 GHz over metal surfaces, as it is designed to be on ground.

Real-World Performance and Implementation

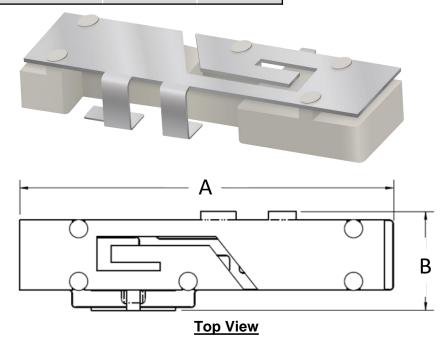
Antennas may look alike on the outside, but the important difference is inside. Other antennas may contain simple PIFA or monopole designs that interact with their surroundings, complicating layout or changing performance with use position. KYOCERA AVX's antennas utilize patented Isolated Magnetic Dipole (IMD) combined with a PIFA structure to deliver a unique size and performance combination.

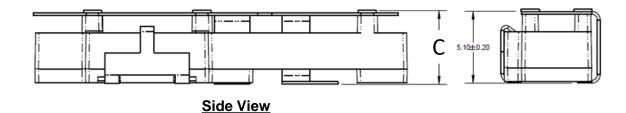
Electrical Specifications

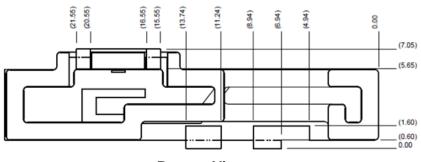
Typical Performance using 1000423 Demo Board with 100mm test cable in Free-space.

Frequency	2400 – 2485 MHz	4900 – 5825 MHz		
Peak Gain	0.6 dBi	4.5 dBi		
Average Efficiency	57%	75%		
VSWR Match	2.5:1 max			
Feed Point Impedance	50 ohms unbalanced			
Polarization	Linear			
Operation Temperature	-40 to +85 °C			
Power Handling	2 Watt CW			

Mechanical Specifications & Ordering Part Number

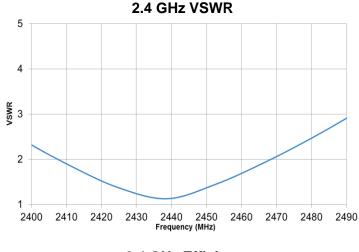

Ordering Part Number	1000424		
Size (mm)	26.60 x 5.24 x 7.05		
Weight (grams)	1.6		
Mounting	SMT		
Packaging	Tape & Reel		
Storage Temperature (°C)	-40 to +85		
Demo Board	1000423		

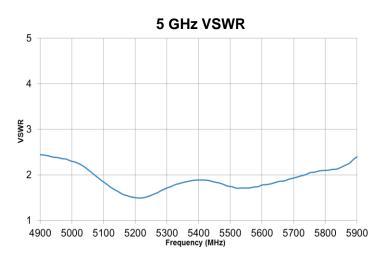


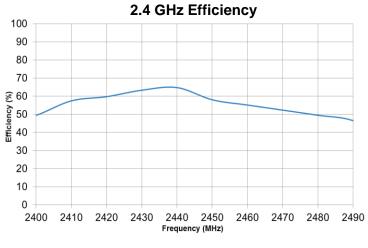

Antenna Dimensions

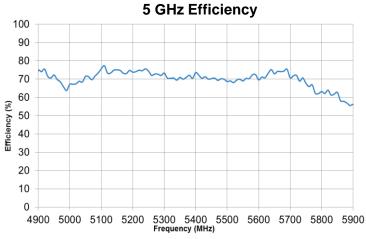
Typical antenna dimensions measured in mm. Dimensions in () parenthesis are Reference Only.

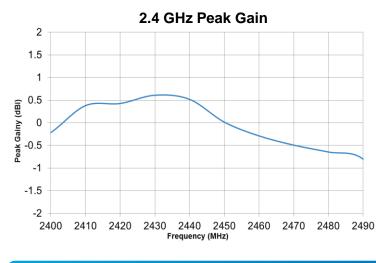
Part Number	Α	В	С
1000424	26.60 ± 0.20	(7.05)	(5.24)

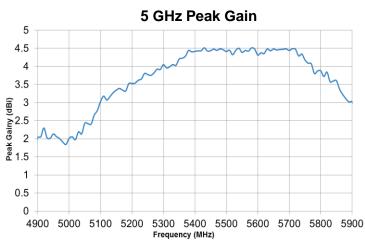



Bottom View




VSWR, Efficiency and Peak Gain Plots

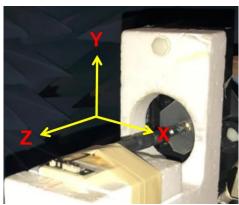

Typical Performance using 1000423 Demo Board with 100 mm test cable in Free-space.

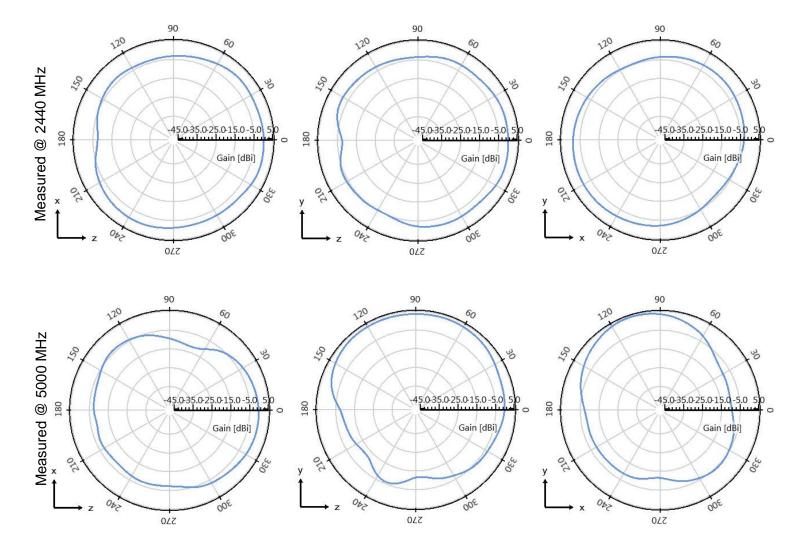


Peak Gain Data (2.4 GHz & 5 GHz)

Typical Performance using 1000423 Demo board with 100 mm test cable in Free-space.

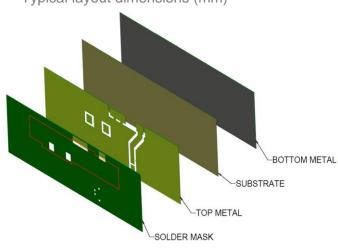
Frequency (MHz)	Peak Gain (2400 - 2485 MHz)
2400	-0.216881401
2410	0.379225568
2420	0.426625926
2430	0.609200053
2440	0.518253236
2450	0.015778613
2460	-0.288999523
2470	-0.492501086
2480	-0.644476279
2490	-0.802073729

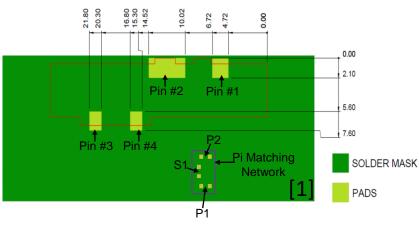

	Hz)		
	Peak Gain (4900 - 5825 MHz)		
4900 2.026889415			
4910 2.052869239			
4920 2.297410665			
4930 2.026052559			
10.10	2.015495394		
4950 2.133464749			
4960 2.059126015			
4970 2.004691122			
4980 1.909319887			
4990 1.842342736			
5000 2.009193148			
5010 2.055427488			
5020 1.975665839			
5030 2.19190427			
5040 2.137972795			
5050 2.43065023			
5060 2.418750072			
5070 2.405186455			
5080 2.654227918			
5090 2.784781508			
5100 3.032284913			
5110 3.179591947			
5120 3.071104319			
5130 3.164906547			
5140 3.274098013			
5150 3.344801762			
5160 3.392270861			
5170 3.346795486			
5180 3.321070412			
5190 3.524740428			
5200 3.529587771			
5210 3.539375239			
5220 3.619021104			
5230 3.65334765			
5240 3.806128393			
5250 3.775176381			
5260 3.75296785			
5270 3.821044541			
5280 3.92644379			
5290 3.916222552			
5300 4.04911316			
5310 3.956828811			
5320 3.992502068			
5330 4.053946453	4.053946453		
5340 4.032265804	4.032265804		
5350 4.206101274	4.206101274		
5360 4.22645108	4.22645108		
5370 4.285563871			
5380 4.44282844			
5390 4.402828674			
5400 4.416813832	4.416813832		


5410	4.430367561	
5420	4.432564423	
5430	4.514615307	
5440	4.426340728	
5450	4.43649872	
5460	4.479079678	
5470	4.444790233	
5480	4.487185247	
5490	4.462317851	
5500	4.412593093	
5510	4.450596467	
5520	4.32503557	
5530	4.443827081	
5540	4.503414861	
5550	4.388159213	
5560	4.441143159	
5570	4.423576137	
5580	4.511690605	
5590	4.482948152	
5600	4.314066614	
5610	4.378100291	
5620	4.355424139	
5630	4.482305401	
5640	4.432848576	
5650	4.483063475	
5660	4.453902502	
5670	4.46945411	
5680	4.472194556	
5690	4.486841666	
5700	4.441216303	
5710	4.490023313	
5720	4.473085385	
5730	4.290837561	
5740	4.343336312	
5750	4.179666899	
5760	4.090898468	
5770	4.07507582	
5780	3.805734575	
5790	3.873365002	
5800	3.882433096	
5810	3.721868119	
5820	3.844102561	
5830	3.577855	

Antenna Radiation Patterns

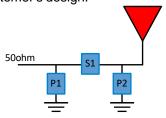
Typical Performance using 1000423 Demo board with 100 mm test cable in Free-space. Measured @ 2440 MHz, 5000 MHz

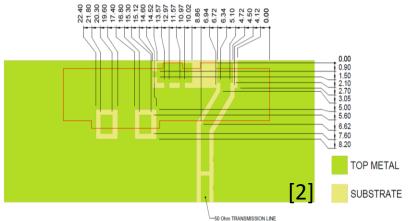


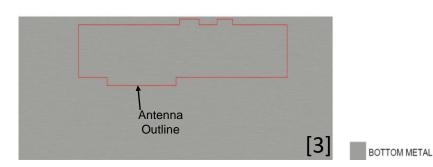


Antenna Layout (1000424)

Typical layout dimensions (mm)

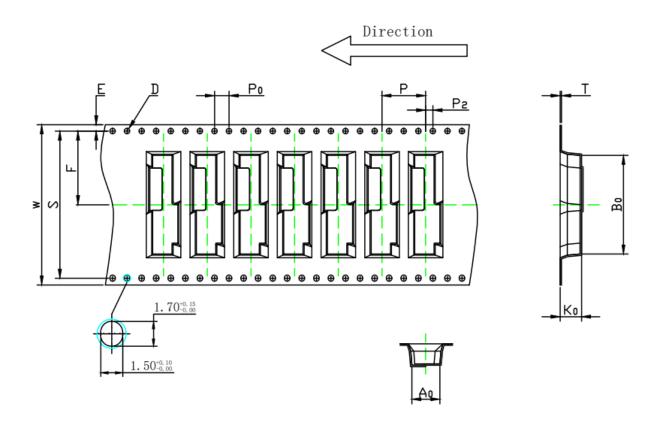

Pin Descriptions


Pin#	Description
1	Feed
2	Ground
3	Dummy Pad
4	Dummy Pad


Matching Pi Network (Demo Board)

Component	Value	Tolerance
P1	DNI	N/A
S1	0Ω	N/A
P2	DNI	N/A

*Actual matching values depend on customer's design.



Tape and Reel Specifications

Notes.

- 1. The cumulative allowable tolerance of the distance between ten round holes is ± 0.20mm
- 2. The allowable bending of 250mm tape is 1mm: if the tape is straightened, and I guess the bending cannot be controlled within 1mm. 3. Ao/Bo dimension is defined by 0.30mm high at the bottom of the groove
- 4. Ko dimension is defined from the inner surface of the groove bottom to the upper surface of the molding
- 5. All dimensions are defined to EIA-481-C standard measurement definition
- 6. Material: black PS material
- 7. Material thickness: 0.40 ± 0.05mm
- 8.13 "reel length: 10.20 Meter
- 9.13 "number of pieces per reel: 800 psc (pcs?)
- 10. The unspecified draft angle is 5°
- 11. The codes for key inspection dimension: W, Po,
- P, P2, E, F, T, Ao, Bo, Ko

W	44. 00 +0. 30	P	12. $00^{+0.10}_{-0.10}$	Ao	7. 70 $^{+0.10}_{-0.10}$	Bo	27. $10^{+0.10}_{-0.10}$
S	$40.40^{+0.10}_{-0.10}$	Po	$4.00^{+0.10}_{-0.10}$	A_1	+0. 10 -0. 10	B_1	+0. 10 -0. 10
Е	$1.75^{+0.10}_{-0.10}$	P_2	$2.00^{+0.10}_{-0.10}$	A_2	+0. 10 -0. 10	B_2	+0. 10 -0. 10
F	$20.20^{+0.10}_{-0.10}$	Do	Ø 1. 50 ^{+0.10} _{-0.00}	K ₀	$5.90^{+0.10}_{-0.10}$		
T	$0.40^{+0.05}_{-0.05}$	D_1	$\phi 2.00^{+0.10}_{-0.00}$	K_1	+0. 10 -0. 10		

SMT Manufacturing and Assembly Guidelines

KYOCERA AVX's antennas are designed for high volume board assembly. Because different product designs use different numbers and types of devices, solder paste, and circuit boards, no single manufacturing process is best for all PCBs. The following recommendations have been determined by KYOCERA AVX, based on successful manufacturing processes.

These antennas are designed for automated pick and place surface mounting. However, as with any SMT device, KYOCERA AVX antennas can be damaged by the use of excessive force during the handling or mounting operation.

Paste Stencil Recommendation

KYOCERA AVX recommends the paste stencil thickness of 0.1 mm and according to the latest revision of the IPC-7525 Stencil Design Guidelines.

SMT Reflow Recommendation

The recommended method for soldering the antenna to the board is forced convection reflow soldering. Please refer to the latest IPC/JEDEC J-STD-020 standard for the optimal SMT Reflow Temperature profile to use.