Rev. V3 #### **Features** - 21.0 dB Small Signal Gain - +22.0 dBm Psat - +20.0 dBm P1dB - +30.5 dBm Output IP3 - Variable Gain with Adjustable Bias - Lead-free 3 mm 16-lead PQFN Package - 100% RF, DC and Output Power Testing - RoHS* Compliant and 260°C Reflow Compatible #### **Description** The XB1014-QT is a three stage 37.0-40.0 GHz GaAs MMIC buffer amplifier that has a small signal gain of 21.0 dB and 20.0 dBm P1dB output compression point. The device also provides variable gain regulation with adjustable bias. The device is ideally suited as an LO or RF buffer stage with broadband performance at a very low cost. The device comes in an RoHS compliant 3x3mm QFN surface mount package offering excellent RF and thermal properties. This device has been designed for use in 38 GHz Point-to-Point Microwave Radio applications. #### **Ordering Information** | Part Number | Package | | |----------------|------------------|--| | XB1014-QT-0G00 | bulk quantity | | | XB1014-QT-0G0T | tape and reel | | | XB1014-QT-EV1 | evaluation board | | #### **Functional Schematic** # Pin Configuration¹ | Pin No. | Function | Pin No. | Function | |---------|-------------|---------|--------------| | 3 | RF Input | 10 | RF Output | | 5 | Gate 1 Bias | 13 | Drain 3 Bias | | 6 | Gate 2 Bias | 14 | Drain 2 Bias | | 7 | Gate 3 Bias | 15 | Drain 1 Bias | The exposed pad centered on the package bottom must be connected to RF and DC ground. ^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC. Rev. V3 # **Electrical Specifications: 37-40.15 GHz (Ambient Temperature T = 25°C)** | Parameter | Units | Min. | Тур. | Max. | |---|-------|------|------|------| | Input Return Loss (S11) | dB | - | 7.0 | 40.0 | | Output Return Loss (S22) | dB | - | 10.0 | - | | Small Signal Gain (S21) | dB | 17.0 | 21.0 | - | | Reverse isolation (S12) | dB | - | 40.0 | 24.5 | | Output Power for 1dB Compression Point (P1dB) | dBm | - | 20.0 | - | | Saturated Output Power (Psat) | dBm | 19.5 | 22.0 | - | | Output IP3 (Psci = 4 dBm) | dBm | 27.0 | 30.5 | - | | Drain Bias Voltage (Vd1,2,3) | V | - | 4.0 | 4.0 | | Gate Bias Voltage (Vg1,2,3) | V | -1.0 | -0.3 | -0.1 | | Supply Current (ld1,2,3) | mA | - | 250 | 300 | # **Absolute Maximum Ratings ^{2,3}** | Parameter | Absolute
Max. | | | |--|---------------------------|--|--| | Supply Voltage (Vd1,2,3) | +4.3 V | | | | Supply Voltage (Vg1,2,3) | -1.5V < Vg < 0V | | | | Input Power (Pin) | +20 dBm | | | | Abs. Max Junction/Channel Temp | MTTF Graph | | | | Max. Operating Junction/Channel Temp | 150°C | | | | Continuous Power Dissipation (Pdiss) at 85°C | 1.2 W | | | | Thermal Resistance | 47°C/W | | | | Operating Temperature (Ta) | -55°C to MTTF
Graph | | | | Storage Temperature (Tstg) | -65°C to +165°C | | | | Mounting Temperature | See solder reflow profile | | | | ESD Min Machine Model (MM) | Class A | | | | ESD Min Human Body Model (HBM) | Class 1A | | | | MSL Level | MSL1 | | | Channel temperature directly affects a device's MTTF. Channel temperature should be kept as low as possible to maximize lifetime. For saturated performance it is recommended that the sum of (2*Vdd + abs (Vgg)) <9V Rev. V3 ## **Typical Performance Curves** Rev. V3 # **Typical Performance Curves (cont.)** #### **MTTF** Rev. V3 App Note [1] Biasing - It is recommended to bias the amplifier with Vd=4.0 V and IdTOTAL=250 mA. It is also recommended to use active biasing to keep the currents constant as the RF power and temperature vary; this gives the most reproducible results. Depending on the supply voltage available and the power dissipation constraints, the bias circuit may be a single transistor or a low power operational amplifier, with a low value resistor in series with the drain supply used to sense the current. The gate of the pHEMT is controlled to maintain correct drain current and thus drain voltage. The typical gate voltage needed to do this is -0.3 V. Typically the gate is protected with Silicon diodes to limit the applied voltage. Also, make sure to sequence the applied voltage to ensure negative gate bias is available before applying the positive drain supply. **App Note [2] Bias Arrangement -** Each DC pin (Vd and Vg) needs to have DC bypass capacitance (100pF/10nF/1uF) as close to the package as possible. ## **Typical Application** MMIC-based 37.0-40.0 GHz Transmitter Block Diagram Rev. V3 ### Lead-Free 3 mm 16-Lead PQFN[†] [†] Reference Application Note S2083 for lead-free solder reflow recommendations. Plating is 100% matte tin over copper. # **Handling Procedures** Please observe the following precautions to avoid damage: #### Static Sensitivity Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices. # XB1014-QT Buffer Amplifier 37.0 - 40.0 GHz Rev. V3 #### M/A-COM Technology Solutions Inc. All rights reserved. Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document. THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS. MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.