

DATA SHEET

OLS449: Radiation-tolerant Phototransistor, Hermetic Surface-mount Optocoupler

Applications

High reliability optical isolation for aerospace and industrial circuits

Features

- Radiation tolerant version of 4N49U
- High current transfer ratio (CTR) is guaranteed
 - Over –55 to +125 °C ambient temperature range
 - At LED current of 1 mA
- 1500 V_{DC} electrical isolation
- Same reliable processing and construction as the OLS249, but with a higher CTR
- High-reliability screenings available
- For RoHS and other product compliance information, see the Skyworks Certificate of Conformance.

Description

1

The OLS449 is specifically designed for high reliability and space applications that require optical isolation in radiation environments such as gamma, neutron, and proton radiation with a high CTR and low saturation V_{CE} . Each optocoupler consists of an LED and NPN silicon phototransistor that is electrically isolated, but optically coupled inside a hermetic six-pin Leadless Chip Carrier (LCC) package.

Electrical parameters are similar to the JEDEC registered 4N49 optocoupler, but with a higher CTR and better CTR degradation characteristics due to radiation exposure.

The OLS449 is designed for a low LED operating current while providing excellent radiation tolerance margins. The OLS449 has 100 percent high reliability screenings available.

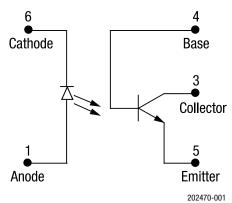


Figure 1. Functional Block Diagram

A functional block diagram of the OLS449 is shown in Figure 1. The absolute maximum ratings of the OLS449 are provided in Table 1. Electrical specifications are provided in Table 2.

A typical switching test circuit is shown in Figure 2. Typical performance characteristics are illustrated in Figures 3 through 5, package dimensions are provided in Figure 6.

Electrical and Mechanical Specifications

Table 1. Absolute Maximum Ratings¹

Parameter	Symbol	Min	Max	Units			
Coupled							
Input to output isolation voltage ²	VDC	-1500	+1500	V			
Storage temperature range	Tstg	-65	+150	°C			
Operating temperature range	T _A	-55	+125	°C			
Lead temperature range for 10 sec			240	°C			
Input Diode							
Average input current	IDD		40	mA			
Peak forward current ³	lF		1	А			
Reverse voltage	VR		2	V			
Power dissipation	PD		70	mW			
Output Detector							
Collector to emitter voltage	VCE		65	V			
Emitter to base voltage	VEB		7	V			
Collector to base voltage	VCB		65	V			
Continuous collector current	Icc		50	mA			
Power dissipation ⁴	PD		300	mW			

^{1.} Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to the device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

2

ESD Handling: Industry-standard ESD handling precautions must be adhered to at all times to avoid damage to this device.

^{2.} Measured between pins 1, 2, and 6 shorted together, and pins $\overline{3}$, 4, and 5 shorted together. $T_A = 25$ °C and duration = 1 s.

^{3.} Value applies for Pw $\leq 1 \mu s$, PRR $\leq 300 pps$.

^{4.} De-rate linearly at 3 mW/°C above 25 °C.

Table 2. Electrical Specifications¹

(T_A = 25 °C, unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Max	Units	
On-State: collector current	Ic_on	IF = 1 mA, VCE = 5 V	15	40		
		IF = +1 mA, VCE = +5 V, T _A = -55 °C	+7		mA	
		IF = 1 mA, VCE = 5 V, T _A = 125 °C	7		1	
On-State: collector to base current	ICB_ON	IF = 10 mA, VCB = 5 V	300		μΑ	
Saturation voltage	VCE_SAT	IF = 1.0 mA, IC = 5.0 mA		0.3	V	
Breakdown voltage, collector to emitter	BVCEO	ICE = 1 mA	65		V	
Breakdown voltage, collector to base	ВУсво	ΙCB = 100 μΑ	65		V	
Breakdown voltage, emitter to base	ВУЕВО	ΙΕΒ = 100 μΑ	7		V	
Off-state leakage current, collector to emitter	ICE_OFF	VCE = 20 V		100	nA	
		VCE = 20 V, T _A = 125 °C		100	μΑ	
Off-state leakage current, collector to base	ICB_OFF	VCB = 20 V		10	nA	
Input, forward voltage	VF	IF = 10.0 mA, T _A = -55 °C	+1.3	+1.9	V	
		IF = 10.0 mA	1.2	1.7	V	
		IF = 10.0 mA, T _A = 125 °C	1.1	1.6	V	
Input reverse current	IR	VR = 2 V		100	μΑ	
Input output resistance ²	Rı_o	VI_0 = ±1500 VDC	10 ¹¹		Ω	
Input output capacitance ²	Cı_o	Vi_0 = 0 V, f = 1 MHz		5	pF	
Time: rise	t _r	Vcc = 10 V, RL = 100 Ω		25	μs	
Time: fall	t _f	IF = 5 mA		25	μs	

Performance is guaranteed only under the conditions listed in the above table.
Measured between pins 1, 2, and 6 shorted together, and pins 3, 4, and 5 shorted together. T_A = 25 °C and duration = 1 s.

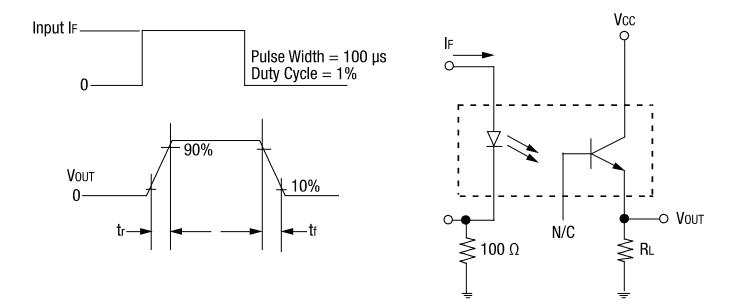


Figure 2. Switching Test Circuit

Typical Performance Characteristics (T_A = -55 °C to 125 °C, Unless Otherwise Noted)

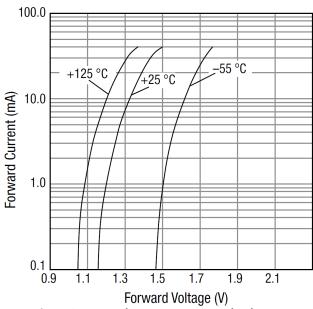
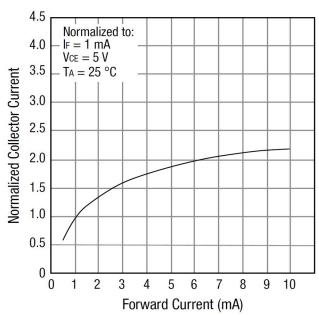



Figure 3. Forward Current vs Forward Voltage

5

Figure 4. Normalized Collector Current vs Forward Current

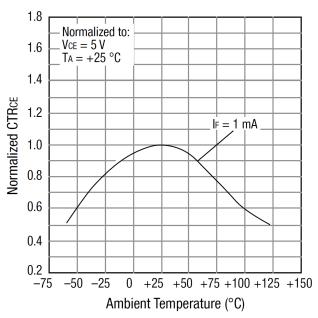


Figure 5. Normalized CTR_{CE} vs Temperature

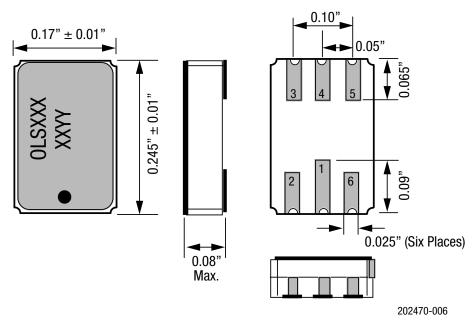


Figure 6. Package Dimensions

6

Ordering Information

Part Number	Description
OLS449	Radiation-tolerant Phototransistor, Hermetic Surface-mount Optocoupler

Copyright © 2012-2015, 2017, 2025, Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc., and its subsidiaries ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE INFORMATION IN THIS DOCUMENT AND THE MATERIALS AND PRODUCTS DESCRIBED THEREIN ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not designed, intended, authorized, or warranted for use or inclusion in life support or life endangering applications, devices, or systems where failure or inaccuracy might cause death or personal injury. Skyworks customers agree not to use or sell the Skyworks products for such applications, and further agree to, without limitation, fully defend, indemnify, and hold harmless Skyworks and its agents from and against any and all actions, suits, proceedings, costs, expenses, damages, and liabilities including attorneys' fees arising out of or in connection with such improper use or sale.

Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters. Customers are solely responsible for their products and applications using the Skyworks products.

"Skyworks" and the Skyworks Starburst logo are registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.