

AB817A-B

Photocoupler

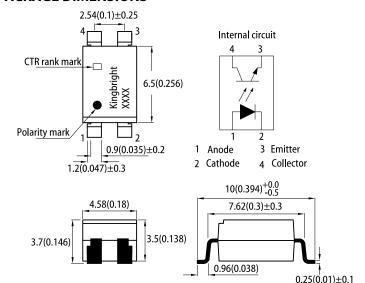
DESCRIPTIONS

- The AB817A-B (1-channel) is optically coupled isolators containing a GaAs Light Emitting Diode and an NPN silicon phototransistor
- The lead pitch is 2.54mm

FEATURES

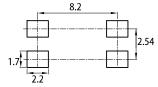
- · Lead forming (gull wing) type, for surface mounting
- Maximum working isolation voltage V_{IOWM} = 630 V_{RMS}
- Maximum repetitive peak isolation voltage V_{IORM} = 890 V_{peak}
- Maximum transient isolation voltage V_{IOTM} = 7 kV_{peak}
- Maximum withstanding isolation voltage V_{ISO} = 5000 V_{RMS}
- Compact dual-in-line package AB817A-B:1-channel type
- Recognized by UL and CUL, file NO.E225308
- Package: 1000 pcs / reel
- . Moisture sensitivity level: 4
- RoHS compliant

APPLICATIONS


- · Computer terminals
- · Registers, copiers, automatic vending machines
- System appliances, measuring instruments
- Programmable logic controller
- · Signal transmission between circuits of different potentials and impedances

NOTES ON HANDLING

Cautions regarding electrical noise


Please ensure the power supply is stable at all times. Even if the designed operating voltage is within specification limits, sudden voltage spikes at startup may damage the component.

PACKAGE DIMENSIONS

RECOMMENDED SOLDERING PATTERN

(units: mm; tolerance: ± 0.15)

- All dimensions are in millimeters (inches).
- Tolerance is ±0.5(0.02") unless otherwise noted.

 The specifications, characteristics and technical data described in the datasheet are subject to
- 4. The device has a single mounting surface. The device must be mounted according to the specifications.

ELECTRICAL / OPTICAL CHARACTERISTICS at T_A=25°C

Parameter		Symbol	Value			Unit	Test Conditions	
			Min.	Тур.	Max.	Unit	rest Conditions	
Input	Forward Voltage		V_{F}	-	1.2	1.4	V	I _F =20mA
	Peak Forward Voltage		V_{FM}	-	-	3.0	V	I _{FM} =0.5A
	Reverse Current		I _R	-	-	10	μA	V _R =4V
Output	Collector Dark Current		I _{CEO}	-	-	10 ⁻⁷	Α	I _F =0mA,V _{CE} =20V
Transfer Characteristics	Current Transfer Ratio [1]		CTR	80	-	160	%	I _F =5mA,V _{CE} =5V
	Collector-Emitter Saturation Voltage		V _{CE(sat)}	-	0.1	0.2	V	I _F =20mA,I _C =1mA
	Cut-off Frequency		f _c	-	80	-	kHz	V_{CE} =5V, I_{C} =2mA R_{L} =100 Ω ,-3dB
	Response Time	Rise Tme	t _r	-	4	18	μs	V_{CE} =2V, I_{C} =2mA R_{L} =100 Ω
		Fall Time	t _f	-	3	18	μs	

1. Classification table of current transfer ratio is shown below.

2. Excess driving current and / or operating temperature higher than recommended conditions may result in severe light degradation or premature failure

ABSOLUTE MAXIMUM RATINGS at T_A=25°C

	Parameter	Symbol	Rating	Unit
Input	Forward Current	l _F	50	mA
	Reverse Voltage	V _R	6	V
	Power Dissipation	P _D	70	mW
Output	Collector-Emitter Voltage	V _{CEO}	35	V
	Emitter-Collector Voltage	V _{ECO}	6	V
	Collector Current	Ic	50	mA
	Collector Power Dissipation	P _C	150	mW
Total Power Dissipation		P _{tot}	200	mW
Isolation Voltage [1]		V _{ISO}	5000	V _{RMS}
Operating Temperature		T _{opr}	-30~+100	°C
Storage Temperature		T_{stg}	-55~+125	°C

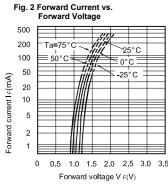
MAXIMUM SAFETY RATINGS

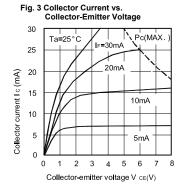
Parameter	Symbol	Value			Unit	Test Condition
raiametei		Min.	Тур.	Max.	Offic	rest condition
Input Current	I _{SI}	-	-	300	mA	-
Output Power Dissipation	P _{so}	-	-	500	mW	-
Ambient Safety Temperature	Ts	-	-	150	°C	-

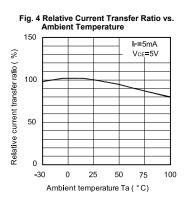
Note:

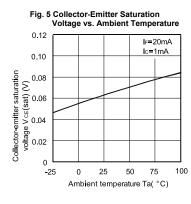
1. This optocoupler is designed for electrical isolation only when operating within its specified safety ratings.

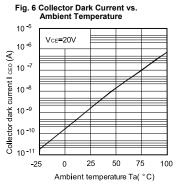
Compliance with these ratings must be guaranteed by implementing appropriate protective circuits.

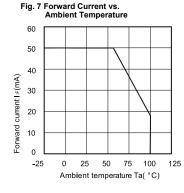

^{1.40} to 60% RH,AC for 1 minute.

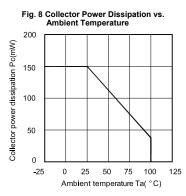

2. Relative humidity levels maintained between 40% and 60% in production area are recommended to avoid the build-up of static electricity – Ref JEDEC/JESD625-A and JEDEC/J-STD-033.

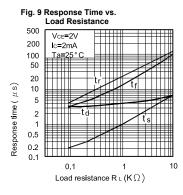


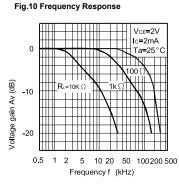

TECHNICAL DATA

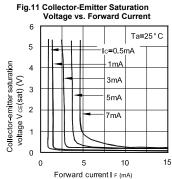


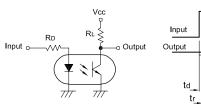


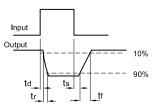


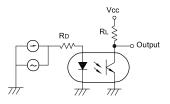




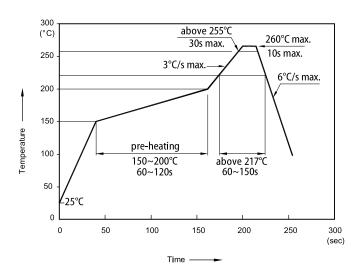






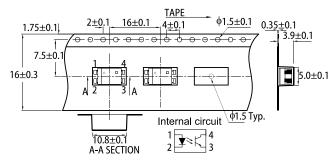


Test Circuit for Response Time

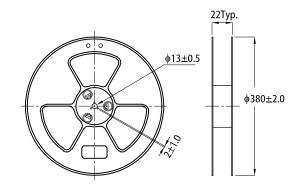


Test Circuit for Frequency Response

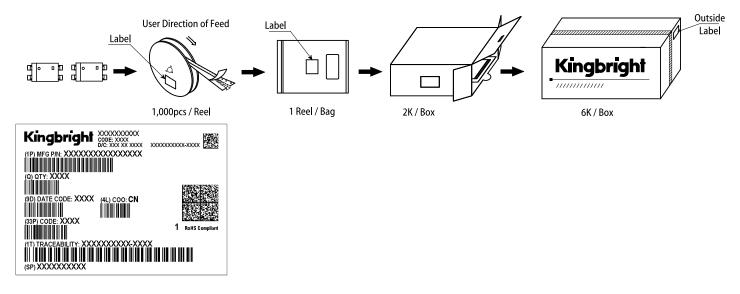
REFLOW SOLDERING PROFILE for LEAD-FREE SMD PROCESS


- Notes.

 1. Don't cause stress to the LEDs while it is exposed to high temperature.


 2. The maximum number of reflow soldering passes is 2 times.

 3. Reflow soldering is recommended. Other soldering methods are not recommended as they might cause damage to the product.


TAPE SPECIFICATIONS (units:mm)

REEL DIMENSION (units: mm)

PACKING & LABEL SPECIFICATIONS

RESTRICTIONS ON PRODUCT USE

- The information in this document represents typical usage and is provided for technical reference.

 The information in this document is subject to change without notice. Please refer to the latest version of this document for the most updated information.
- Please ensure this product is used in accordance with the electrical and environmental specifications and tolerances listed in this document. If the usage exceeds the specification
- range, Kingbright will not be responsible for any subsequent issues.

 Semiconductor components may be damaged by electrical or physical stresses. The buyer of Kingbright products is responsible to use them in accordance with all safety regulations. During development and design, the user should insure Kingbright products are used within the latest specification tolerances, and avoid any situations when the failure of Kingbright products might cause physical harm, death, or property loss.

 The information in this document may not be reproduced or retransmitted without Kingbright's permission.

