F862 Metallized Polypropylene Film for Harsh Environmental Conditions, Class X2, 310 VAC (Automotive Grade) CHARGED: #### **Overview** The F862 is constructed of metallized polypropylene film encapsulated with self-extinguishing resin in a box material recognized by UL 94 V-0. The F862 Series is ideal for harsh environmental conditions and meets the demanding Automotive Electronics Council's AEC-Q200 qualification requirements. #### **Applications** Typical applications include connection in series with the mains, capacitive power supplies and energy meters, with special emphasis in automotive applications for severe ambient conditions. **Electronic Components** #### **Benefits** Approvals: ENEC, UL, cUL, CQC Rated voltage: 310 VAC 50/60 Hz Capacitance range: 0.1 – 4.7 μF Lead spacing: 15.0 – 27.5 mm • Capacitance tolerance: ±20%, ±10% • Climatic category: 40/110/56, IEC 60068-1 • Tape and reel in accordance with IEC 60286-2 RoHS compliant and lead-free terminations Operating temperature range of -40°C to +110°C • 100% screening factory test at 1,900 VDC · Qualification based on AEC-Q200 guidelines ## **Part Number System** | F | 862 | В | C | 104 | M | 310 | Z | |-----------------|---------------------------------|--------------------------------|------------------------|---|--------------------------|---------------|-------------------------------| | Capacitor Class | Series | Lead Spacing (mm) | Size Code | Capacitance
Code (pF) | Capacitance
Tolerance | Voltage (VAC) | Packaging | | F = Film | X2, Metallized
Polypropylene | B = 15
D = 22.5
F = 27.5 | See Dimension
Table | First two digits
represent
significant
figures. Third digit
specifies number
of zeros. | K = ±10%
M = ±20% | 310 | See Ordering
Options Table | # **Ordering Options Table** | Lead Spacing
Nominal
(mm) | Type of Leads and Packaging | Lead Length
(mm) | Lead and
Packaging
Code | |---------------------------------|-------------------------------------|------------------------------|-------------------------------| | | Standard Lead and Packaging Options | | | | | Pizza Pack | 4 +2/-0 | Z | | 15 | Other Lead and Packaging Options | | | | | Pizza – Short Leads | 3.2 +0.3/-0.2 | ZL32K | | | Bulk (Bag) – Max Length Leads | 25 +5/-0 | ALR0L | | | Ammo Pack | H ₀ = 18.5 +/-0.5 | R | | | | | | | | Standard Lead and Packaging Options | | | | | Pizza Pack | 4 +2/-0 | Z | | | Pizza Pack – Long Leads | 17 +0/-1 | ZLH0J | | 22.5 | Other Lead and Packaging Options | | | | | Pizza – Short Leads | 3.2 +0.3/-0.2 | ZL32K | | | Pizza Pack – Max Length Leads | 25 +5/-0 | ZLR0L | | | Ammo Pack | H ₀ = 18.5 +/-0.5 | R | | | | | | | | Standard Lead and Packaging Options | | | | 27.5 | Pizza Pack | 4 +2/-0 | Z | | 27.0 | Pizza – Long Leads | 17 +0/-1 | ZLH0J | | | Pizza – Short Leads | 3.2 +0.3/-0.2 | ZL32K | #### **Dimensions - Millimeters** | Size Code | | p | | В | | Н | L | | d | | |-----------|---------|-----------|---------|-----------|---------|-----------|---------|-----------|---------|-----------| | Size Code | Nominal | Tolerance | | BG | 15.0 | ±0.4 | 6.0 | Maximum | 12.0 | Maximum | 18.0 | Maximum | 0.8 | ±0.05 | | BK | 15.0 | ±0.4 | 7.5 | Maximum | 13.5 | Maximum | 18.0 | Maximum | 0.8 | ±0.05 | | BP | 15.0 | ±0.4 | 8.5 | Maximum | 14.5 | Maximum | 18.0 | Maximum | 0.8 | ±0.05 | | BS | 15.0 | ±0.4 | 10.0 | Maximum | 16.0 | Maximum | 18.0 | Maximum | 0.8 | ±0.05 | | ВҮ | 15.0 | ±0.4 | 11.0 | Maximum | 19.0 | Maximum | 18.0 | Maximum | 0.8 | ±0.05 | | BZ | 15.0 | ±0.4 | 12.0 | Maximum | 20.0 | Maximum | 18.0 | Maximum | 0.8 | ±0.05 | | DB | 22.5 | ±0.4 | 6.0 | Maximum | 14.5 | Maximum | 26.0 | Maximum | 0.8 | ±0.05 | | DI | 22.5 | ±0.4 | 7.0 | Maximum | 16.0 | Maximum | 26.0 | Maximum | 0.8 | ±0.05 | | DJ | 22.5 | ±0.4 | 8.5 | Maximum | 17.0 | Maximum | 26.0 | Maximum | 0.8 | ±0.05 | | DO | 22.5 | ±0.4 | 10.0 | Maximum | 18.5 | Maximum | 26.0 | Maximum | 0.8 | ±0.05 | | DP | 22.5 | ±0.4 | 11.0 | Maximum | 20.0 | Maximum | 26.0 | Maximum | 0.8 | ±0.05 | | DU | 22.5 | ±0.4 | 13.0 | Maximum | 22.0 | Maximum | 26.0 | Maximum | 0.8 | ±0.05 | | FC | 27.5 | ±0.4 | 11.0 | Maximum | 20.0 | Maximum | 31.5 | Maximum | 0.8 | ±0.05 | | FI | 27.5 | ±0.4 | 13.0 | Maximum | 25.0 | Maximum | 31.5 | Maximum | 0.8 | ±0.05 | | FN | 27.5 | ±0.4 | 14.0 | Maximum | 28.0 | Maximum | 31.5 | Maximum | 0.8 | ±0.05 | | FS | 27.5 | ±0.4 | 19.0 | Maximum | 29.0 | Maximum | 31.5 | Maximum | 0.8 | ±0.05 | | FY | 27.5 | ±0.4 | 22.0 | Maximum | 37.0 | Maximum | 31.5 | Maximum | 0.8 | ±0.05 | Note: See Ordering Options Table for lead length (LL/H_0) options. # Qualification Automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. For additional information regarding the Automotive Electronics Council and AEC-Q200, please visit their website at www.aecouncil.com. # **Performance Characteristics** | 310 VAC 50/60 Hz | | | | | | |--|---|---|--|--|--| | 0.1 – 4.7 μF | | | | | | | ±20%, ±10% | | | | | | | -40°C to +110°C | | | | | | | 40/110/56 | | | | | | | Storage time: ≤ 24 months from the date marked on the label package Average relative humidity per year ≤ 70% RH ≤ 85% for 30 days randomly distributed throughout the year Dew is absent Temperature: −40 to 80°C (see "Maximum Humidity in Storage Conditions" graph below) | | | | | | | ENEC, UL, CUC, CQC | | | | | | | Maximum Values at +23°C | | | | | | | | C ≤ 0.1 µF | C > 0.1 µF | | | | | 1 kHz | 0.3% | 0.2% | | | | | The 100% screening factory test is carried out at 1,900 VDC. The voltage level is selected to meet the requirements in applicable equipment standards. All electrical characteristics are checked after the test. It is not permitted to repeat this test as there is a risk of damage to the capacitor. KEMET is not liable in such | | | | | | | Minimu | um Values Between Ter | minals | | | | | C ≤ 0.33 μF ≥ 30,000 MΩ | | 00 MO | | | | | C ≤ 0.33 µF | = 50,0 | 3 0 1V122 | | | | | C ≥ 0.33 µF | ≥ 10,000 | | | | | | | 0.1 - 4.7 µF ±20%, ±10% -40°C to +110°C 40/110/56 Storage time: ≤ 24 m package Average relative hum RH ≤ 85% for 30 days Dew is absent Temperature: -40 to Conditions" graph be ENEC, UL, cUL, CQC M 1 kHz The 100% screening voltage level is select equipment standards after the test. It is not a risk of damage to to case for any failures. | 0.1 - 4.7 µF ±20%, ±10% -40°C to +110°C 40/110/56 Storage time: ≤ 24 months from the date mapackage Average relative humidity per year ≤ 70% RH ≤ 85% for 30 days randomly distributed the to distributed the t | | | | ## **Maximum Humidity in Storage Conditions** ## **Impedance Graph** ## **Environmental Test Data** | Test | Publication | Procedure | |----------------------|---------------------------|--| | Endurance | IEC 60384-14 | 1.25 x V _R VAC 50 Hz, once every hour increase to 1,000 VAC for 0.1 second, 1,000 hours at upper rated temperature | | Vibration | IEC 60068-2-6 Test Fc | 3 directions at 2 hours each 10 – 55 Hz at 0.75 mm or 98 m/s² | | Bump | IEC 60068-2-29 Test Eb | 1,000 bumps at 390 m/s ² | | Temperature Cycling | JESD22-MethodJA-104 | 1,000 cycles (-55°C to 85°C) Note: If 100°C or 125°C part the 1,000 cycles will be at that temperature rating. Measurement at 24 ±4 hours after test conclusion. 30 minute maximum dwell time at each temperature extreme. 1 minute maximum transition time. | | Active Flammability | IEC 60384-14 | V _R + 20 surge pulses at 2.5 kV (pulse every 5 seconds) | | Passive Flammability | IEC 60384-14 | IEC 60384-1, IEC 60695-11-5 Needle-flame test | | Biased Humidity | MIL-STD-202
Method 103 | 1,000 hours 40°C/93%RH. Rated voltage. Measurement at 24 ±2 hours after test conclusion. | | THB Test | | 85°C, 85% RH and 240 VAC, 1,000 hours Capacitance change (Δ C/C): \leq 10% Dissipation factor change (Δ tan δ): \leq 5 * 10 ⁻³ (at 1 kHz) Insulation resistance Rins or time constant τ = CR Rins: \geq 50% of initial limit | # **Approvals** | Mark | Specification | File Number | |-----------------|---------------------------------------|--| | | EN/IEC 60384-14 | CA08.00203 | | c FLL us | UL 60384-14 and CAN/CSA-
E60384-14 | E97797 | | Cec | IEC 60384-14 | CQC17001166651
CQC17001166767
CQC17001167225
CQC17001167220
CQC17001166886
CQC17001167231 | # **Environmental Compliance** All new KEMET EMI capacitors are RoHS compliant and Halogen-Free. ## **Table 1 - Ratings & Part Number Reference** | Capacitance | Size Code | Dim | ensions in | mm | Lead Spacing (p) | dV/dt | Part Number | |---------------------------|-----------|--------|------------|--------|------------------|--------------|--------------------| | Value (µF) | Size Code | В | Н | L | Lead Spacing (p) | (V/µs) | Part Number | | 0.1 | BK | 7.5 | 13.5 | 18.0 | 15.0 | 400 | F862BK104(1)310(2) | | 0.15 | BK | 7.5 | 13.5 | 18.0 | 15.0 | 400 | F862BK154(1)310(2) | | 0.22 | BP | 8.5 | 14.5 | 18.0 | 15.0 | 400 | F862BP224(1)310(2) | | 0.33 | BS | 10.0 | 16.0 | 18.0 | 15.0 | 400 | F862BS334(1)310(2) | | 0.39 | BS | 10.0 | 16.0 | 18.0 | 15.0 | 400 | F862BS394(1)310(2) | | 0.47 | BY | 11.0 | 19.0 | 18.0 | 15.0 | 400 | F862BY474(1)310(2) | | 0.56 | BZ | 12.0 | 20.0 | 18.0 | 15.0 | 400 | F862BZ564(1)310(2) | | 0.15 | DB | 6.0 | 14.5 | 26.0 | 22.5 | 200 | F862DB154(1)310(2) | | 0.22 | DI | 7.0 | 16.0 | 26.0 | 22.5 | 200 | F862DI224(1)310(2) | | 0.33 | DJ | 8.5 | 17.0 | 26.0 | 22.5 | 200 | F862DJ334(1)310(2) | | 0.39 | DJ | 8.5 | 17.0 | 26.0 | 22.5 | 200 | F862DJ394(1)310(2) | | 0.47 | DO | 10.0 | 18.5 | 26.0 | 22.5 | 200 | F862D0474(1)310(2) | | 0.56 | DO | 10.0 | 18.5 | 26.0 | 22.5 | 200 | F862D0564(1)310(2) | | 0.68 | DP | 11.0 | 20.0 | 26.0 | 22.5 | 200 | F862DP684(1)310(2) | | 0.82 | DP | 11.0 | 20.0 | 26.0 | 22.5 | 200 | F862DP824(1)310(2) | | 1.0 | DU | 13.0 | 22.0 | 26.0 | 22.5 | 200 | F862DU105(1)310(2) | | 1.2 | DU | 13.0 | 22.0 | 26.0 | 22.5 | 200 | F862DU125(1)310(2) | | 1.0 | FC | 11.0 | 20.0 | 31.5 | 27.5 | 150 | F862FC105(1)310(2) | | 1.5 | FI | 13.0 | 25.0 | 31.5 | 27.5 | 150 | F862FI155(1)310(2) | | 2.2 | FN | 14.0 | 28.0 | 31.5 | 27.5 | 150 | F862FN225(1)310(2) | | 3.3 | FS | 19.0 | 29.0 | 31.5 | 27.5 | 150 | F862FS335(1)310(2) | | 4.7 | FY | 22.0 | 37.0 | 31.5 | 27.5 | 150 | F862FY475(1)310(2) | | Capacitance Value
(µF) | Size Code | B (mm) | H (mm) | L (mm) | Lead Spacing (p) | dV/dt (V/μs) | Part Number | ⁽¹⁾ $M = \pm 20\%$, $K = \pm 10\%$. ⁽²⁾ Insert lead and packaging code. See Ordering Options Table for available options. ### **Soldering Process** The implementation of the RoHS directive has resulted in the selection of SnAgCu (SAC) alloys or SnCu alloys as primary solder. This has increased the liquidus temperature from that of 183°C for SnPb eutectic alloy to 217 – 221°C for the new alloys. As a result, the heat stress to the components, even in wave soldering, has increased considerably due to higher pre-heat and wave temperatures. Polypropylene capacitors are especially sensitive to heat (the melting point of polypropylene is 160 – 170°C). Wave soldering can be destructive, especially for mechanically small polypropylene capacitors (with lead spacing of 5 mm to 15 mm), and great care has to be taken during soldering. The recommended solder profiles from KEMET should be used. Please consult KEMET with any questions. In general, the wave soldering curve from IEC Publication 61760–1 Edition 2 serves as a solid guideline for successful soldering. Please see Figure 1. Reflow soldering is not recommended for through-hole film capacitors. Exposing capacitors to a soldering profile in excess of the above the recommended limits may result to degradation or permanent damage to the capacitors. Do not place the polypropylene capacitor through an adhesive curing oven to cure resin for surface mount components. Insert through-hole parts after the curing of surface mount parts. Consult KEMET to discuss the actual temperature profile in the oven, if through-hole components must pass through the adhesive curing process. A maximum two soldering cycles is recommended. Please allow time for the capacitor surface temperature to return to a normal temperature before the second soldering cycle. #### **Manual Soldering Recommendations** Following is the recommendation for manual soldering with a soldering iron. The soldering iron tip temperature should be set at 350°C (+10°C maximum) with the soldering duration not to exceed more than 3 seconds. #### **Wave Soldering Recommendations** ### **Soldering Process cont'd** #### **Wave Soldering Recommendations cont'd** 1. The table indicates the maximum set-up temperature of the soldering process Figure 1. | Dielectric | | imum Pre
emperatu | Maximum
Peak Soldering
Temperature | | | |---------------------------|-------------------------------|-------------------------------|--|-------------------------------|-------------------------------| | Film Material | Capacitor
Pitch
≤ 10 mm | Capacitor
Pitch
= 15 mm | Capacitor
Pitch
> 15 mm | Capacitor
Pitch
≤ 15 mm | Capacitor
Pitch
> 15 mm | | Polyester | 130°C | 130°C | 130°C | 270°C | 270°C | | Polypropylene | 100°C | 110°C | 130°C | 260°C | 270°C | | Paper | 130°C | 130°C | 140°C | 270°C | 270°C | | Polyphenylene
Sulphide | 150°C | 150°C | 160°C | 270°C | 270°C | 2. The maximum temperature measured inside the capacitor: Set the temperature so that inside the element the maximum temperature is below the limit: | Dielectric Film Material | Maximum temperature measured inside the element | |---------------------------|---| | Polyester | 160°C | | Polypropylene | 110°C | | Paper | 160°C | | Polyphenylene
sulphide | 160°C | Temperature monitored inside the capacitor. #### **Selective Soldering Recommendations** Selective dip soldering is a variation of reflow soldering. In this method, the printed circuit board with through-hole components to be soldered is preheated and transported over the solder bath as in normal flow soldering without touching the solder. When the board is over the bath, it is stopped and pre-designed solder pots are lifted from the bath with molten solder only at the places of the selected components, and pressed against the lower surface of the board to solder the components. The temperature profile for selective soldering is similar to the double wave flow soldering outlined in this document, however, instead of two baths, there is only one bath with a time from 3 to 10 seconds. In selective soldering, the risk of overheating is greater than in double wave flow soldering, and great care must be taken so that the parts are not overheated. #### Construction #### **Winding Scheme** # **Marking** ## **Packaging Quantities** | Size
Code | Lead
Spacing | Thickness (mm) | Height
(mm) | Length
(mm) | Bulk
Short Leads | Bulk
Long Leads | Ammo | Pizza | |--------------|-----------------|----------------|----------------|----------------|---------------------|--------------------|------|-------| | BG | | 6 | 12 | 18 | 1750 | 1000 | 680 | 935 | | BK | | 7.5 | 13.5 | 18 | 1000 | 800 | 500 | 748 | | BP | 15 | 8.5 | 14.5 | 18 | 1000 | 650 | 440 | 663 | | BS | เจ | 10 | 16 | 18 | 750 | 550 | 380 | 561 | | BY | | 11 | 19 | 18 | 450 | 400 | 340 | 510 | | BZ | | 12 | 20 | 18 | 350 | 300 | 330 | 459 | | | | | | | | | | | | DB | | 6 | 14.5 | 26 | 805 | 450 | 464 | 660 | | DI | | 7 | 16 | 26 | 700 | 450 | 380 | 564 | | DJ | 22.5 | 8.5 | 17 | 26 | 450 | 350 | 280 | 468 | | DO | 22.5 | 10 | 18.5 | 26 | 360 | 350 | 235 | 396 | | DP | | 11 | 20 | 26 | 300 | 200 | 217 | 360 | | DU | | 13 | 22 | 26 | 230 | 150 | 200 | 300 | | | | | | | | | | | | FC | | 11.0 | 20.0 | 31.5 | | | | 300 | | FI | | 13.0 | 25.0 | 31.5 | | | | 250 | | FN | 27.5 | 14.0 | 28.0 | 31.5 | | | | 230 | | FS | | 19.0 | 29.0 | 31.5 | | | | 170 | | FY | | 22.0 | 37.0 | 31.5 | | | | 150 | ## Lead Taping & Packaging (IEC 60286-2) # **Taping Specification** | | Standard IEC 60286-2 | | | | | | | | | |---------------------------|----------------------|-------------------------------|------------|------------|------------|------------|--------------------|--------------------|--------------------| | Lead spacing | +6/-0.1 | F | 5 | 7.5 | 10 | 15 | 22.5 | 27.5 | F | | Carrier tape width | +1/-0.5 | W | 18 | 18 | 18 | 18 | 18 | 18 | 18+1/-0.5 | | Hold-down tape width | Minimum | W _o | 6 | 6 | 9 | 10 | 10 | 10 | | | Position of sprocket hole | ±0.5 | W ₁ | 9 | 9 | 9 | 9 | 9 | 9 | 9+0.75/-0.5 | | Distance between tapes | Maximum | W_2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | Sprocket hole diameter | ±0.2 | D_{o} | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Feed hole lead spacing | ±0.2 ⁽¹⁾ | P ₀ ⁽³⁾ | 12.7 | 12.7 | 12.7 | 12.7 | 12.7 | 12.7 | 12.7 | | Distance lead – feed hole | ±0.7 | P ₁ | 3.85 | 3.75 | 7.7 | 5.2 | 7.8 | 5.3 | P ¹ | | Deviation tape – plane | Maximum | Δр | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | | Lateral deviation | ±2 | Δh | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Total thickness | ±0.2 | t | 0.7 | 0.7 | 0.7 | 0.7 | 0.9 ^{MAX} | 0.9 ^{MAX} | 0.9 ^{MAX} | | Sprocket hole/cap body | ±0.5 | H ₀ ⁽²⁾ | 18.5+/-0.5 | 18.5+/-0.5 | 18.5+/-0.5 | 18.5+/-0.5 | 18.5+/-0.5 | 18.5+/-0.5 | 18+2/-0 | - (1) Maximum cumulative feed hole error, 1 mm per 20 parts. - (2) 16.5 mm available on request. - (3) 15 mm available on request ($F \ge 10$ mm). # Lead Taping & Packaging (IEC 60286-2) cont'd # **Ammo Specifications** | Series | Dimensions (mm) | | | | | | |------------------------|-----------------|-----|----|--|--|--| | Series | Н | W | Т | | | | | R4x, R4x+R, R7x, RSB | | | | | | | | F5A, F5B, F5D | 360 | 340 | 59 | | | | | F6xx, F8xx | | | | | | | | PHExxx, PMExxx, PMRxxx | 330 | 330 | 50 | | | | # **Reel Specifications** | Series | Dimensions (mm) | | | |---------------------------------------|-----------------|----------|-----------------| | Series | D | Н | W | | R4x, R4x+R, R7x, RSB
F5A, F5B, F5D | 355
500 | 30
25 | 55
(maximum) | | F6xx, F8xx | | | | | PHExxx, PMExxx, PMRxxx | 360
500 | 30 | 46
(maximum) | # **Manufacturing Date Code (IEC-60062)** | Y = Year, Z = Month | | | | | |---------------------|------|-----------|------|--| | Year | Code | Month | Code | | | 2000 | М | January | 1 | | | 2001 | N | February | 2 | | | 2002 | Р | March | 3 | | | 2003 | R | April | 4 | | | 2004 | S | May | 5 | | | 2005 | T | June | 6 | | | 2006 | U | July | 7 | | | 2007 | V | August | 8 | | | 2008 | W | September | 9 | | | 2009 | Χ | October | 0 | | | 2010 | Α | November | N | | | 2011 | В | December | D | | | 2012 | С | | | | | 2013 | D | | | | | 2014 | Е | | | | | 2015 | F | | | | | 2016 | Н | | | | | 2017 | J | | | | | 2018 | K | | | | | 2019 | L | | | | | 2020 | M | | | | #### **KEMET Electronics Corporation Sales Offices** For a complete list of our global sales offices, please visit www.kemet.com/sales. #### **Disclaimer** All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained. Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage. Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.