

User Guide Please read the Important Notice and Warnings at the end of this document 002-31522 Rev. **

www.infineon.com page 1 of 57 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

About this document

Scope and purpose

The EZ-USB® FX2LP™ series (abbreviated as FX2LP) is a highly integrated controller family that serves as the
basis for any USB high-speed peripheral device. The CY3689 EZ-USB FX2LP Discovery Kit (DVK) is designed to

help beginners and experienced users to implement various applications using FX2LP microcontrollers.

http://www.infineon.com/

User Guide 2 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Table of contents

Table of contents

About this document ... 1

Table of contents .. 2

1 Safety Information ... 4
1.1 Regulatory Compliance ... 4

1.2 General Safety Instructions ... 4
1.2.1 ESD Protection ... 4

1.2.2 Handling Boards ... 4

2 Introduction .. 5
2.1 Kit Contents ... 5
2.1.1 Hardware Not Included with the Kit .. 5

3 Getting Started .. 6
3.1 SDK Installation ... 6

3.2 Downloading Example Projects .. 18
3.2.1 Bulkloop Example .. 18
3.2.2 Bulksrc .. 18

3.2.3 EP_Interrupts ... 18
3.2.4 IBN Example ... 18

3.2.5 Pingnak ... 18

3.2.6 Vend_ax .. 18

3.3 Prepare FX2LP Discovery Kit ... 19
3.4 Binding Driver Manually .. 20

4 CY3689 EZ-USB FX2LP Kit Hardware .. 21
4.1 CY3689 EZ-USB FX2LP Discovery Kit Architecture ... 21

4.2 CY3689 EZ-USB FX2LP Discovery Kit Connectors/Jumpers ... 21
4.2.1 Jumper Settings ... 22

4.2.2 GPIF Connectors ... 22
4.3 Accessory Board/Add-on Modules Specification ... 24

5 Programming the FX2LP Device in CY3689 ... 25

5.1 Download Firmware Image to External I2C EEPROM ... 25
5.2 Download Firmware Image to Internal RAM .. 27

6 Firmware Examples ... 28
6.1 Bulkloop Example ... 28

6.1.1 Description ... 28
6.1.2 Building Bulkloop Firmware Example Code for EZ-USB RAM and EEPROM 29

6.1.3 Download Bulkloop Firmware Image to Internal RAM or EEPROM .. 30
6.1.4 Binding Cypress USB Driver for the Downloaded Firmware Image ... 30
6.1.5 Testing Bulkloop Firmware Functionality ... 30

6.2 Bulksrc Firmware Examples .. 33
6.2.1 Description ... 33
6.2.2 Building Bulksrc Firmware Example Code for EZ-USB RAM and EEPROM 35

6.2.3 Download Firmware Image to EZ-USB Internal RAM and EEPROM .. 35

6.2.4 Binding Cypress USB Driver for the Downloaded Firmware Image ... 35
6.2.5 Testing Bulksrc Firmware Functionality ... 36

User Guide 3 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Table of contents

6.3 EP_Interrupts Example ... 38
6.3.1 Description ... 38

6.3.2 Building EP_Interrupts Firmware Example Code for EZ-USB RAM and EEPROM 38
6.3.3 Method to Program EP_Interrupts Firmware Image to EZ-USB Internal RAM and EEPROM 38

6.3.4 Binding Cypress USB Driver for the Downloaded Firmware Image ... 38
6.3.5 Testing EP_Interrupts Firmware Functionality ... 38
6.4 IBN Firmware Example .. 39

6.4.1 Description ... 39
6.4.2 Building Firmware Example Code for EZ-USB RAM and EEPROM .. 42

6.4.3 Method to Download Firmware Image to EZ-USB Internal RAM and External EEPROM 42
6.4.4 Binding Cypress USB Driver for the Downloaded Firmware Image ... 42

6.4.5 Testing the IBN Firmware Functionality .. 43
6.5 Pingnak Firmware Example .. 43
6.5.1 Description ... 43
6.5.2 Building Firmware Example Code for EZ-USB RAM and EEPROM .. 46
6.5.3 Method to Download Firmware Image to EZ-USB Internal RAM and External EEPROM 46

6.5.4 Binding Cypress USB Driver for the Downloaded Firmware Image ... 46

6.5.5 Testing the Pingnak Firmware Functionality .. 46
6.6 Vend_ax Firmware Example.. 48

6.6.1 Description ... 48

6.6.2 Building Firmware Example Code for EZ-USB RAM and EEPROM .. 48

6.6.3 Method to Download Firmware Image to EZ-USB Internal RAM and External EEPROM 49
6.6.4 Testing the vend_ax Example .. 49
6.7 KBAs Associated with the Discovery Kit ... 52

6.7.1 KBA229176 - Cypress EZ-USB FX2LP-based Logic Analyzer ... 53

6.7.2 KBA229175 - Debugging of FX2LP Firmware using I2C ... 53
6.7.3 KBA229648 - FX2LP I2C-based Debug with SDCC on Eclipse IDE ... 53

6.7.4 KBA30768 - Lattice Crosslink FPGA Configuration and UVC Color Bar Video Streaming 53

7 Troubleshooting the Kit ... 54

Appendix – Board Schematic ... 55

Revision History .. 56

User Guide 4 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Safety Information

1 Safety Information

1.1 Regulatory Compliance

The CY3689 EZ-USB FX2LP Discovery Kit is intended for use as a development platform for hardware or
software in a laboratory environment. The board is an open-system design, which does not include a shielded
enclosure. Due to this reason, the board may cause interference to other electrical or electronic devices in close
proximity. In a domestic environment, this product may cause radio interference. In such cases, take adequate
preventive measures. Also, do not use this board near any medical equipment or RF devices.

Attaching additional wiring to this product or modifying the product operation from the factory default may

affect its performance and cause interference with other apparatus in the immediate vicinity. If such
interference is detected, suitable mitigating measures must be taken.

The CY3689 EZ-USB FX2LP Discovery Kit contains ESD-sensitive devices.
Electrostatic charges readily accumulate on the human body and any equipment,

and can discharge without detection. Permanent damage may occur on devices
subjected to high-energy discharges. Proper ESD precautions are recommended to
avoid performance degradation or loss of functionality. Store unused CY3689 EZ-

USB FX2LP Discovery Kit in the protective shipping package.

End-of-Life/Product Recycling

This kit has an end-of-life cycle of five years from the year of manufacturing

mentioned on the back of the box. Contact your nearest recycler for discarding the
kit.

1.2 General Safety Instructions

1.2.1 ESD Protection

ESD can damage boards and associated components. Cypress recommends that you perform procedures only
at an ESD workstation. If an ESD workstation is not available, use appropriate ESD protection by wearing an

antistatic wrist strap attached to the chassis ground (any unpainted metal surface) on the board when handling

parts.

1.2.2 Handling Boards

CY3689 EZ-USB FX2LP Discovery Kit boards are sensitive to ESD. Hold the board only by its edges. After
removing the board from its box, place it on a grounded, static-free surface. Use a conductive foam pad if

available. Do not slide the board over any surface.

Any physical action on the CY3689 EZ-USB FX2LP Discovery Kit such as changing wires, jumper settings, or

measuring voltages can cause stress on the CY3689 printed circuit board assembly (PCBA) and Micro USB
connectors. You must ensure that the PCBA has proper support on the bottom side to avoid stress on the PCBA
when the DVK is in operation.

User Guide 5 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Introduction

2 Introduction

The EZ-USB® FX2LP™ series (abbreviated as FX2LP) is a highly integrated controller family that serves as the
basis for any USB high-speed peripheral device. To take full advantage of the USB 2.0 480-Mbps signaling rate,

FX2LP contains specialized hardware to buffer USB data and to connect seamlessly to a variety of high-
bandwidth external devices such as MCUs, ASICs, and FPGAs. The CY3689 EZ-USB FX2LP Discovery Kit (DVK) is
designed to help beginners and experienced users to implement applications such as USB2 Mobile add-on

digital cameras, thermal cameras, logic analyzers, and multiple industrial applications using FX2LP
microcontrollers. FX2LP DVK consists of the FX2LP device with EEPROM module, power subsection, micro-USB

connector, and interface connectors for add-on modules.

This user guide describes the CY3689 EZ-USB FX2LP Discovery Kit (DVK), giving detailed instructions that enable
you to do the following:

• Understand the DVK board and its features

• Test simple firmware projects to familiarize with the kit

• Understand the structure of any FX2LP application, including the firmware framework

• Load and debug code

2.1 Kit Contents

The CY3689 EZ-USB FX2LP Discovery Kit (DVK) contains the following items:

• CY3689 EZ-USB FX2LP Discovery Kit (DVK)

• Quick Start Guide

2.1.1 Hardware Not Included with the Kit

• Micro-USB cable

User Guide 6 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Getting Started

3 Getting Started

This chapter describes how to get started with the CY3689 EZ-USB FX2LP Discovery Kit. Section 3.1 explains the
procedure to download and install the FX3 SDK and FX2LP DVK package required for the kit. FX3 SDK includes

the latest version of drivers and host applications for the Discovery Kit. The Keil uVision IDE and GPIF Designer
software for FX2LP application development are included in the FX2LP DVK package. Section 3.2 explains the
steps to download firmware examples related to the Discovery Kit. Section 3.3 briefly explains the steps for

setting up the board and installing the required drivers on the host PC.

3.1 SDK Installation

FX2LP shares the same Software Development Kit (SDK) as FX3, which comes with tools, drivers, and

application examples. These help to accelerate application development using FX2LP and FX3 devices. The SDK

provides application development and debug support on Windows, Linux, and MacOS platforms. SDK

installation is mandatory for first time users, since it provides all the required utilities, tools, and system files.

1. Download the latest version of FX3 SDK Setup from EZ-USB FX3 Software Development Kit. The SDK setup
includes host applications and drivers required for CY3689.

2. Run the downloaded setup file and InstallShield Wizard. The default installation location will be displayed
in the tool; if required, change the installation folder. Click Next.

Figure 1 FX3 SDK Setup Installation - Installation Folder Selection

https://www.cypress.com/documentation/software-and-drivers/ez-usb-fx3-software-development-kit

User Guide 7 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Getting Started

3. Choose Installation type as Typical and click Next.

Figure 2 FX3 SDK Setup Installation- Installation Type Selection

4. Accept the Cypress End User License Agreement and click Next to continue installation

Figure 3 FX3 SDK Setup Installation-Cypress End User License Agreement

User Guide 8 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Getting Started

5. Accept the Eclipse Public License Agreement, which is required for installing Eclipse tools and IDEs. Click

Next to continue installation.

Figure 4 FX3 SDK Setup Installation- Eclipse Public License Agreement

6. Accept Eclipse Foundation Software User Agreement and click Next.

Figure 5 FX3 SDK Setup Installation- Eclipse Foundation Software User Agreement

User Guide 9 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Getting Started

7. The installation screen will display as in Figure 6. The panel on the left of the installation window shows the

tools, software, and related files installed with the SDK.

Figure 6 FX3 SDK Setup Installation

8. Upon successful SDK installation, the page shown in Figure 7 will be displayed. Click Finish to finalize the

installation.

Figure 7 FX3 SDK Installation Completed

9. Download and install the latest version of FX2LP DVK setup from EZ-USB FX2LP Development Kit. The

FX2LP DVK package installation includes Keil uVision IDE and GPIF Designer, required for firmware
development.

https://www.cypress.com/file/135301/download

User Guide 10 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Getting Started

10. Run the downloaded setup file and InstallShield Wizard. The installation wizard displays the CY3684 EZ USB

FX2LP DVK. CY3684 and CY3689 are FX2LP development kits that share a common development plaform,
and CY3684 DVK installation includes the FX2LP DVK package required for CY3689 also. The default
installation location will be displayed in the tool; if required, change the installation folder. Click Next.

Figure 8 FX2LP SDK Setup Installation - Installation Folder Selection

11. Choose Installation type as Typical and click Next.

Figure 9 FX2LP SDK Setup Installation - Installation Type Selection

User Guide 11 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Getting Started

12. Accept the Cypress End User License Agreement and click Next to continue installation

Figure 10 FX2LP SDK Setup Installation-Cypress End User License Agreement

13. The Installation Page will display as in Figure 11.

Figure 11 FX2LP SDK Setup Installation

User Guide 12 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Getting Started

14. uVision installation setup will begin automatically on successful completion of step 13. Click Next to

continue installation.

Figure 12 uVision Installation - Welcome Screen

15. Click Yes to accept the Keil software end-user license agreement

Figure 13 Keil Software End User License

User Guide 13 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Getting Started

16. Restrictions of evaluation versions are listed on the installation window. The uVision included in the SDK

has a 4kB code size restriction. For code sizes greater than 4KB, a licensed version of uVision is required.
Click Next to continue installation. Refer to section 6.7.3 for using a free SDCC compiler that does not have
a limit on code size.

Figure 14 Restrictions of Evaluation Version Window

17. Choose the installation folder and click Next. The default installation location is C:\Keil.

Figure 15 uVision Installation Folder Selection

User Guide 14 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Getting Started

18. Enter User Name and Company Name in the Customer Information window and click Next.

Figure 16 Customer Information Window

19. Review settings for copying files in the Start Copying Window and click Next.

Figure 17 Start Copying Files Window

User Guide 15 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Getting Started

20. Installation will start and Setup Status will display the progress

Figure 18 uVision Installation-Setup Status

21. Successful installation displays InstallShield Window Complete window. Click Finish to complete the
uVision installation.

Figure 19 InstallShield Window Complete

User Guide 16 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Getting Started

22. Cypress GPIF Designer installation automatically starts after step 21. Click Next on the GPIF Designer

Installshield welcome window.

Figure 20 GPIF Designer InstallShield Welcome Window

23. Accept the license agreement and click Next. Choose the installation folder and click Next to continue

installation.

Figure 21 GPIF Designer-Installation Folder

User Guide 17 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Getting Started

24. Click Next in the window that appears to start installation. Successful installation displays InstallShield

Wizard Complete window. Click Finish to complete the installation.

Figure 22 InstallShield Wizard Complete-GPIF Designer

User Guide 18 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Getting Started

3.2 Downloading Example Projects

The example projects help to understand the capabilities of the CY3689 FX2LP Discovery Kit and can be used as

a reference for new application development using the Discovery Kit.

The example projects are downloadable from the CY3689 FX2LP Discovery Kit website in zip format. Visit
CY3689 FX2LP Discovery Kit page or click http://www.cypress.com/cy3689 to download the example projects.

Details of example projects are explained in the Firmware Examples section. The following firmware examples
are included in example projects.

3.2.1 Bulkloop Example

This project illustrates the configuration of FX2LP to accept bulk data from the host and loop it back to the

host. Bulk packets received on an OUT endpoint are looped back to an IN endpoint. FX2LP double buffering is
demonstrated. This project is explained in the Bulkloop Example section.

3.2.2 Bulksrc

FX2LP provides an endless source and sink of the USB bulk data. This program demonstrates how to service

bulk endpoints and manage endpoint buffers. Refer to the Bulksrc Firmware Examples section for detailed

description of the project.

3.2.3 EP_Interrupts

This is the bulkloop firmware that uses interrupts instead of polling status bits. It demonstrates the use of

endpoint interrupts. Detailed explanation of the example project is included in the EP_Interrupts Example
section.

3.2.4 IBN Example

This project performs bulk loopback of EP2OUT to EP6IN and EP4OUT to EP8IN using the IN-BULK-NAK (IBN)
interrupt to initiate the transfer. Refer to the IBN Firmware Example section for the project description.

3.2.5 Pingnak

This project performs bulk loopback of EP2OUT to EP6IN and EP4OUT to EP8IN using the PINGNAK interrupt to
initiate the transfer. Refer to the Pingnak Firmware Example section for a detailed description.

3.2.6 Vend_ax

The USB specification provides a mechanism called “vendor requests” to create your own custom USB

commands. This project shows how to implement these requests. Application note AN45471 contains detailed

information. Refer to the Vend_ax Firmware Example section for the description.

http://www.cypress.com/cy3689
https://www.cypress.com/documentation/application-notes/an45471-create-your-own-usb-vendor-commands-using-fx2lp

User Guide 19 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Getting Started

3.3 Prepare FX2LP Discovery Kit

Figure 23 CY3689 EZ-USB FX2LP Discovery Kit

1. Check whether Jumper J1 and J2 are populated. If they are not, populate the jumpers. The functionality of

the jumpers is explained in Jumper Settings. SW1 should be in the ON position (pressed).

2. Connect the CY3689 EZ-USB FX2LP Discovery Kit to the PC/Desktop through Micro-USB-to-A cable. The

board is powered through the J5 (Micro-USB) connector. Power LED “LED1” turns-on, indicating that the

Discovery Kit is powered and the power supply regulator is working.

3. If this is the first time you have plugged it in, you should see pop-up messages to install a USB driver.

Navigate to the driver folder and select the subfolder corresponding to your Windows OS version.

4. Open the Device Manager; the device will be listed as Cypress FX2LP No EEPROM Device on successful
installation of driver.

Figure 24 Control Panel

User Guide 20 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Getting Started

3.4 Binding Driver Manually

If automatic driver binding failed for some reason, follow this procedure to bind the driver manually.

1. Open Windows Device Manager and locate Unknown device under Other devices

Figure 25 Manual Driver Binding-Step 1

2. Right-click on Unknow device and select Update Driver Software…

Figure 26 Manual Driver Binding-Step 2

3. Select Browse my computer for driver software and locate the driver corresponding to the operating
system from <FX3 SDK Installation Directory>\driver\bin. This is the same installed directory chosen in step 2
of section 3.1. Select a driver based on the operating system. For example, for Win 10 (64-bit), select

Win10\x64.

Figure 27 Manual Driver Binding-Step 3

4. Click OK and press Next as in Figure 27. The operating system acknowledges successful driver installation.

User Guide 21 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

CY3689 EZ-USB FX2LP Kit Hardware

4 CY3689 EZ-USB FX2LP Kit Hardware

4.1 CY3689 EZ-USB FX2LP Discovery Kit Architecture

Figure 28 CY3689 EZ-USB FX2LP Discovery Kit System-level Block Diagram

The Infineon CY7C68013A-56PVXC device, referred to as FX2LP in this document, is a low-power, highly

integrated USB 2.0 microcontroller in the FX2LP High-Speed USB Peripheral Controller family.

Infineon IFX25001 is a monolithic integrated fixed NPN type voltage regulator, which regulates the device input

voltage to 3.3 V from 5 V input available from the micro-USB connector.

U3 is the onboard 128Kb I2C EEPROM to store firmware image. FX2LP accesses EEPROM through the I2C
interface.

CY3689 is powered through a micro-USB connector, J5. The kit requires the USB port to program the device and
also for interfacing the kit with the USB host controller on the PC/Desktop.

Three onboard LEDs are available, one power LED and two firmware/application driven LEDs. Power LED (LED1)
is connected to the output of the 5 V-to-3.3 V regulator. LED2 and LED3 are firmware-controlled LEDs,

connected to the GPIOs and the user can configure the functionality.

GPIF connectors J3 and J4 help to mount add-on boards/module to extend the functionality, and allow

development of various applications using the kit. Various signals required to interface the FX2LP kit with
accessory boards, add-on modules, and FPGAs are routed to the onboard GPIF interface connectors.

4.2 CY3689 EZ-USB FX2LP Discovery Kit Connectors/Jumpers

Figure 29 shows the CY3689 EZ-USB FX2LP Discovery Kit with the interface connectors, jumpers, and critical
components.

User Guide 22 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

CY3689 EZ-USB FX2LP Kit Hardware

Figure 29 CY3689 EZ-USB FX2LP Discovery Kit

4.2.1 Jumper Settings

J1 and J2 are 2-pin jumpers mounted on the board. Table 1 explains their functionalities.

Table 1 Jumper Settings

Jumper Function Default Setting

J1 Enables or disables the application/firmware LEDs (LED1 and LED2)

J1 Closed: Enable LEDs

J1 Open: Disable LEDs or disconnect LEDs from VCC

Closed

J2 Boot selection jumper

J2 Closed: SDA of the EEPROM is connected to I2C SDA from FX2LP and

firmware is running from the EEPROM

J2 Open: Comes up in bootloader mode with default USB descriptors

Closed

4.2.2 GPIF Connectors

CY3689 EZ-USB FX2LP Discovery Kit is mounted with two 20-pin GPIF connectors J3 and J4. The FX2LP GPIOs
and pins essential for interfacing the kit with add-on modules, accessory boards, FPGA boards or any other
boards, are routed to the two interface connectors J3 and J4. Table 2 explains the functionality of pins in the

interface connectors.

Refer the FX2LP datasheet for more details on the pins/pin descriptions.

https://www.cypress.com/file/138911/download

User Guide 23 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

CY3689 EZ-USB FX2LP Kit Hardware

Table 2 FX2LP Interface Connector Pinout

Interface

Connector

CY3689 Pin

Names

FX2LP Signal/GPIO Description

J3 1: PD5 1: PD5/FD13 Multiplexed pin whose function is selected by the

IFCONFIG [1..0] and EPxFIFOCFG.0 (word-wide) bits. 2: PD6 2: PD6/FD14

3 PD7 3: PD7/FD15

4: GND

5: CLK 5: CLKOUT CLKOUT: 12-, 24- or 48-MHz clock, phase-locked to the

24-MHz input clock.

6: GND

7: SLRD 8: RDY0/*SLRD SLRD is the input-only read strobe with programmable

polarity (FIFOPINPOLAR.3) for the slave FIFOs connected

to FD[7..0] or FD[15..0]

8: SLWR 9: RDY1/*SLWR SLWR is the input-only write strobe with programmable

polarity (FIFOPINPOLAR.2) for the slave FIFOs connected

to FD[7..0] or FD[15..0].

9: GND

10: VCC Connect to the 3.3-V power source.

11: GND

12: IFCLK 20: IFCLK Interface clock, used for synchronously clocking data

into or out of the slave FIFOs.

13: SCL 22: SCL Clock for the I2C interface. Connect to EEPROM I2C SCL.

Pulled-up to VCC with a 2.2-kΩ resistor.

14: SDA 23: SDA Data for I2C compatible interface. Connect to EEPROM

I2C SDA.

Pulled-up to VCC with a 2.2-kΩ resistor.

15: PB0 25: PB0/FD0 Multiplexed pin whose function is selected by the

IFCONFIG [1..0] bits.

PB0, PB1, PB2 and PB3 are bidirectional I/O port pins.
16: PB1 26: PB1/FD1

17: PB2 27: PB2/FD2

18: PB3 28: PB3/FD3

19: GND

20: VCC Connect to the 3.3-V power source.

J4 1: PD4 56: PD4/FD12 Multiplexed pin, whose function is selected by the

IFCONFIG [1..0] and EPxFIFOCFG.0 (word-wide) bits. 2: PD3 55: PD3/FD11

3: PD2 54: PD2/FD10

4: PD1 53: PD1/FD9

5: PD0 52: PD0/FD8

6: PA7 47: PA7/*FLAGD/SLCS# Multiplexed pin, whose function is selected by the

IFCONFIG [1:0] and PORTACFG.7 bits.

PA7, PA5 and PA6 are bidirectional I/O port pins.
7: PA6 46: PA6/PKTEND

8: PA5 45: PA5/FIFOADR1

9: PA4 44: PA4/FIFOADR0 Multiplexed pin whose function is selected by IFCONFIG

[1..0].

PA4 is a bidirectional I/O port pin.

User Guide 24 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

CY3689 EZ-USB FX2LP Kit Hardware

Interface

Connector

CY3689 Pin

Names
FX2LP Signal/GPIO Description

10: PA3 43: PA3/*WU2 Multiplexed pin whose function is selected by WAKEUP.7

and OEA.3.

PA3 is a bidirectional I/O port pin.

11: PA2 42: PA2/*SLOE Multiplexed pin whose function is selected by IFCONFIG

[1..0].

PA4 is a bidirectional I/O port pin.

12: PA1 41: PA1/INT1# Multiplexed pin whose function is selected by

PORTACFG.1.

PA1 is a bidirectional I/O port pin.

13: PA0 40: PA0/INT0# Multiplexed pin whose function is selected by two bits,

PORTACFG.0

PA2 is a bidirectional I/O port pin.

14: CTL2 38: CTL2/*FLAGC CTL2 is a GPIF control output.

15: CTL1 37: CTL1/*FLAGB CTL1 is a GPIF control output.

16: CTL0 36: CTL0/*FLAGA CTL0 is a GPIF control output.

17: PB7 32: PB7/FD7 Multiplexed pin whose function is selected by the

IFCONFIG [1..0] bits.

PB4, PB5, PB6, and PB7 are bidirectional I/O port pins.
18: PB6 31: PB6/FD6

19: PB5 30: PB5/FD5

20: PB4 29: PB4/FD4

4.3 Accessory Board/Add-on Modules Specification

Accessory boards or add-on modules are used to extend the functionality of the CY3689 FX2LP Discovery Kit.

The modules are interfaced to the Discovery Kit through the onboard GPIF connectors. The GPIF connectors
can source only 3.3 V at 250 mA (maximum) for the accessory boards/add-on modules.

User Guide 25 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Programming the FX2LP Device in CY3689

5 Programming the FX2LP Device in CY3689

This chapter explains the methods to update firmware through the USB interface from a host PC/Desktop. The
USB Control Center is used to download and test FX2LP code. The USB Control Center is part of a larger suite of

tools, SDK, which is available for free download. The suite includes extensive tools and documentation for
writing Windows programs in the C++ or .NET languages that communicate with the FX2LP Discovery Kit via the
Cypress (Infineon) driver

As mentioned in the Getting Started section, download and install the latest version of the SDK software.

Select the Typical installation type. Use the downloaded firmware code examples referred to in section 3.2.
The CY3689 Dicovery Kit supports firmware download to external EEPROM (using .iic file) or internal RAM (using
.hex file). Users can choose either EERPOM or RAM for firmware download target; the procedure to download
firmware is explained below.

5.1 Download Firmware Image to External I2C EEPROM

1. Browse to the FX3 SDK installation directory. Open the USB Control Center application (CyControl.exe) from
the location <Installed directory>\<version>\application\c_sharp\controlcenter\bin\Release. Choose the

Cypress FX2LP device as in Figure 30.

Figure 30 USB Control Center Tool

2. Connect the J2 jumper to program the onboard EERPOM (see Jumper Settings)

3. In the USB Control Center application, select Program > FX2 > 64KB EEPROM.

Figure 31 Selecting EEPROM

User Guide 26 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Programming the FX2LP Device in CY3689

4. Choose the desired firmware code example (iic file) from the location where the code examples were

unzipped and saved (section 3.2). To download this code example to the external EEPROM, click Open
(Figure 32).

Figure 32 Selecting Firmware Image

5. Successful programming is indicated at the bottom left corner of the tool as “Programming Succeeded”

(Figure 33).

Figure 33 Programming Succeeded

6. Press reset button to re-enumerate Discovery kit with latest firmware.

User Guide 27 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Programming the FX2LP Device in CY3689

5.2 Download Firmware Image to Internal RAM

1. Remove jumper J2 to put the kit in bootloader mode (see Jumper Settings)

2. Open the USB Control Center application (CyControl.exe) from the location <Installed directory>\
<version>\application\c_sharp\controlcenter\bin\Release.

3. In the USB Control Center application, follow the path Program -> FX2 -> RAM as in Figure 34 to program

the firmware code examples (.hex file).

Figure 34 Selecting RAM as Programming Target

4. Choose the desired code example (.hex file) from the location where the firmware code examples were

unzipped and saved (section 3.2). To download this code example to the internal RAM, click Open.

5. Successful programming is indicated in the bottom left corner of the tool as “Programming Succeeded”.

User Guide 28 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

6 Firmware Examples

This chapter describe the steps to run the firmware examples provided with the example projects. The tools
and utilities required for development and testing are available with the FX3 and FX2LP SDK installation. Keil

IDE is used to open the source code and USB Control Center utility downloads the firmware into FX2LP device.

6.1 Bulkloop Example

6.1.1 Description

This project illustrates the configuration of FX2LP to accept bulk data from the host and loop it back to the
host. Click bulkloop.Uv2 at <example project>\Firmware\Bulkloop and observe the source code. Two endpoints

are configured in the TD_init() function of bulkloop.c to handle bulk transfer: one OUT endpoint and one IN

endpoint. The two endpoints defined in the descriptor file must be configured in this function in the following
statements:

EP2CFG = 0xA2;

SYNCDELAY;

EP6CFG = 0xE2;

SYNCDELAY;

The key characteristics of each endpoint are as follows:

• Endpoint 2 - OUT, bulk, double buffered

• Endpoint 6 - IN, bulk, double buffered

After configuration, the OUT endpoints are armed to accept data from the host. An OUT endpoint is said to be

armed if it is ready to accept data from the host. Each endpoint is configured as double buffered.

SYNCDELAY;

EP2BCL = 0x80;// arm EP2OUT by writing byte count w/skip.

SYNCDELAY;

EP2BCL = 0x80;

SYNCDELAY;

The previous lines arm the two OUT endpoints by skipping two packets of data, making the buffers available to
receive OUT data.

AUTOPTRSETUP |= 0x01;

This enables the auto-pointer used for data transfer in the TD_Poll function. The data loopback is

implemented in the TD_Poll function that is called repeatedly when the device is idle. Endpoint 2 is armed to
accept data from the host. This data is transferred to endpoint 6. First, endpoint 2 is checked to see if it has

data by reading the endpoint 2 empty bit in the endpoint status register (EP2468STAT). If endpoint 2 has data
(sent from the host), the capability of endpoint 6 to receive the data is checked by reading the endpoint 6 full
bit in the endpoint status register. If endpoint 6 is not full, then the data is transferred. This decision is executed

by the following statements:

if (!(EP2468STAT & bmEP2EMPTY))

{// check EP2 EMPTY (busy) bit in EP2468STAT (SFR), core set's this bit when

// FIFO is empty

if (!(EP2468STAT & bmEP6FULL))

User Guide 29 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

{// check EP6 FULL (busy) bit in EP2468STAT (SFR), core set's this bit

// when FIFO is full

The data pointers are initialized to the corresponding buffers. The first auto-pointer is initialized to the first

byte of the endpoint 2 FIFO buffer. The second auto-pointer is initialized to the first byte of the endpoint 6 FIFO
buffer. The number of bytes to be transferred is read from the byte count registers of endpoint 2. The registers
EP2BCL and EP2BCH contain the number of bytes written into the FIFO buffer by the host. These two registers

give the byte count of the data transferred to the FIFO in an OUT transaction as long as the data is not
committed to the peripheral side. This data pointer initialization and loading of the count is done in the

following statements:

APTR1H = MSB(&EP2FIFOBUF); // Initializing the first data pointer

APTR1L = LSB(&EP2FIFOBUF);

AUTOPTRH2 = MSB(&EP6FIFOBUF); // Initializing the second data pointer

AUTOPTRL2 = LSB(&EP6FIFOBUF);

count = (EP2BCH << 8) + EP2BCL; // The count value is loaded from the byte

// count registers

The data transfer is carried out by the execution of the following loop:

for(i = 0x0000; i < count; i++)

{

// setup to transfer EP2OUT buffer to EP6IN buffer using AUTOPOINTER(s)

EXTAUTODAT2 = EXTAUTODAT1;

}

Because auto-pointers are enabled, the pointers increment automatically and the statement

EXTAUTODAT2 = EXTAUTODAT1;

transfers data from endpoint 2 to endpoint 6. Each time the statement is executed, the auto-pointer is

incremented. It is executed repeatedly to transfer each byte from endpoint 2 to 6.

After the data is transferred, endpoint 2 must be rearmed to accept a new packet from the host. Endpoint 6 is
committed to make the FIFO buffers available to the host for reading data from endpoint 6.

This is accomplished by the following statements:

EP6BCH = EP2BCH;

SYNCDELAY;

EP6BCL = EP2BCL; // commit EP6IN by specifying the number of bytes the host

can read

//from EP6

SYNCDELAY;

EP2BCL = 0x80; // re (arm) EP2OUT

6.1.2 Building Bulkloop Firmware Example Code for EZ-USB RAM and EEPROM

• Click the Build Target button at the top right corner of the IDE. Build window of the Keil IDE displays the

successful compilation of the entire project.

• Firmware output for EZ-USB RAM: The output of the Build Target is bulkloop.hex, which is the relevant file for
downloading to EZ-USB RAM.

User Guide 30 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

• Firmware output for external EEPROM: To generate an EEPROM-compatible firmware image, the Keil IDE

invokes the hex2bix.exe utility to convert the output file bulkloop.hex into bulkloop.iic. Right-click Target1 in
the project window and select Options for Target 'Target1'. This results in a pop-up of the Keil settings for
this project. Select the Output tab and observe at the bottom of IDE that the hex2bix utility is invoked in the
Run User program#1 section and that the hex2bix utility is invoked in the following manner

hex2bix -i -c 0x00 -f 0xC2 -o bulkloop.iic bulkloop.hex

6.1.3 Download Bulkloop Firmware Image to Internal RAM or EEPROM

Refer to sections Download Firmware Image to External I2C EEPROM and Download Firmware Image to
Internal RAM.

6.1.4 Binding Cypress USB Driver for the Downloaded Firmware Image

The bulkloop firmware uses vendor class (0xFF) with VID/PID 0x04B4/1004. This example should bind with
generic USB driver cyUSB3.sys and driver information file CyUSB3.inf, which contains the relevant VID/PID for

this example. Follow the procedure outlined to manually bind the driver using the Windows Hardware Wizard. If

you have performed the binding process for any one of the firmware examples, you can skip it for this example.

6.1.5 Testing Bulkloop Firmware Functionality

The bulkloop firmware functionality can be tested using the following applications:

• USB Control Center

• Bulkloop (C# .NET)

6.1.5.1 Test Using USB Control Center PC Application

1. Locate the USB Control Center folder and navigate to its bin directory (<FX3 SDK installation folder>
\<version>\application\c_sharp\controlcenter\bin\Release). Double-click the CyControl.exe file in either the

Debug or Release folder.

2. Expand the Cypress FX2LP Sample Device entry to reveal the device’s bulk endpoints EP2-OUT and EP6-IN.

Figure 35 Bulkloop Example Device Internals

3. Select the Data Transfers tab. Click the Bulk out endpoint (0x02) entry in the left-hand panel; notice that

the Transfer Data button appears as Transfer Data-OUT. Click this button and observe a total of 512 bytes
with zero default values transfer from the PC to the FX2LP board. Click the Transfer Data-OUT button
again. The PC dispatches a second packet to FX2LP.

User Guide 31 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

Figure 36 Successful Bulk OUT Transfer

4. Highlight the Bulk in endpoint (0x86) entry. The Transfer Data button now appears as Transfer Data-IN.
Click this button and observe a total of 512 bytes transfer from FX2LP to the host, which it displays as

hexadecimal values.

5. Click the Transfer Data-IN button again. The second queued FX2LP packet transfers to the host and this

sequence confirms the double-buffered operation of the two endpoints.

Figure 37 Successful Bulk IN Transfer

User Guide 32 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

6. Select the Bulk out endpoint (0x02) again. Position the mouse cursor inside the Text to send box and type

“1234”. The hex values display in the Data to send box, and the Bytes to Transfer box increments for every
digit typed. Click Transfer Data-OUT.

7. In the Text to send box, type “abcd”, and then click the Transfer Data-OUT button.

8. Select the Bulk in endpoint (0x86), and leave the default Bytes to Transfer value of 512 bytes. Click the
Transfer Data-IN button twice.

Figure 38 Two Packets OUT, Two Packets IN

6.1.5.2 Test using Bulkloop C#.NET Application

The bulkloop firmware can be tested using the Bulkloop C# .NET application. For the Windows OS, bulkloop

can be accessed at <FX3 SDK Installed directory>\<version>\application\c_sharp\bulkloop\bin\Release. Select
the bulkloop OUT and bulkloop IN endpoint pairs EP2 and EP6. Click Start and observe the number of

successful bulk IN and bulk OUT transfers.

User Guide 33 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

Figure 39 Data loopback using Bulkloop C# .NET Application

6.2 Bulksrc Firmware Examples

6.2.1 Description

This project illustrates the configuration of the EZ-USB device to accept bulk data from the host and loop it
back to the host. Click the bulksrc.Uv2 project located at <Example project folder>\Firmware\Bulksrc and
observe the code. Five endpoints are configured in the TD_init() function of bulksrc.c to handle bulk transfer.

Two OUT (EP2/EP4) endpoints and two IN (EP6/EP8) endpoints are double-buffered pairs. The fifth endpoint is
EP1, which acts as both the bulk IN and bulk OUT endpoint with a 64-byte buffer. These are defined in the
descriptor file (dscr.a51). The endpoints are configured in this TD_init function in the following statements:

EP1OUTCFG = 0xA0; EP1INCFG = 0xA0;

SYNCDELAY;

EP2CFG = 0xA2;

SYNCDELAY;

EP4CFG = 0xA0;

SYNCDELAY;

EP6CFG = 0xE2;

SYNCDELAY;

EP8CFG = 0xE0;

After configuration, the OUT endpoints are armed to accept data from the host. An OUT endpoint is said to be

armed if it is ready to accept data from the host. Each endpoint is configured as double buffered.

User Guide 34 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

/* since the defaults are double buffered we must write dummy byte counts

twice */

SYNCDELAY;

EP2BCL = 0x80; // arm EP2OUT by writing byte count w/skip.

SYNCDELAY;

EP4BCL = 0x80;

SYNCDELAY;

EP2BCL = 0x80; /* arm EP4OUT by writing byte count w/skip. */

SYNCDELAY;

EP4BCL = 0x80;

The previous lines arm the two OUT endpoints by loading byte counts for two data packets with the skip bit set,

making the buffers available to receive OUT data. The IN endpoint, EP6, is armed with an incrementing pattern
of data starting with 0x2, regardless of the data sent on the EP2 bulk OUT endpoint, as shown in the following
code.

for (i=0;i<512;i++)

EP6FIFOBUF[i] = i+2;

SYNCDELAY;

EP6BCH = 0x02;

SYNCDELAY;

EP6BCL = 0x00;

In the TD_poll() function, if there is packet content in EP2, then it is rearmed, discarding the current data.

// if there is some data in EP2 OUT, rearm it

if(!(EP2468STAT & bmEP2EMPTY))

{

SYNCDELAY;

EP2BCL = 0x80;

}

Endpoint EP6 is rearmed with an incrementing pattern of data starting with 0x2.

// if EP6 IN is available, rearm it

If(!(EP2468STAT & bmEP6FULL))

{

SYNCDELAY; EP6BCH = 0x02; SYNCDELAY; EP6BCL = 0x00;

}

The contents received from the EP4 OUT endpoint are copied to a temporary buffer, myBuffer[], and rearmed.

// if there is new data in EP4FIFOBUF, then copy it to a temporary buffer

if(!(EP2468STAT & bmEP4EMPTY))

{

APTR1H = MSB(&EP4FIFOBUF); APTR1L = LSB(&EP4FIFOBUF);

User Guide 35 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

AUTOPTRH2 = MSB(&myBuffer); AUTOPTRL2 = LSB(&myBuffer);

myBufferCount = (EP4BCH << 8) + EP4BCL;

for(i = 0x0000; i < myBufferCount; i++)

{

EXTAUTODAT2 = EXTAUTODAT1;

}

SYNCDELAY;

EP4BCL = 0x80; // re(arm) EP4OUT

}

If the EP8 bulk IN endpoint is empty, then the contents of the temporary buffer are transferred to an auto-

pointer and copied to the EP8 IN buffer, as shown in the following code.

/* if there is room in EP8IN, then copy the contents of the temporary buffer

to it */

if(!(EP2468STAT & bmEP8FULL) && myBufferCount)

{

APTR1H = MSB(&myBuffer); APTR1L = LSB(&myBuffer);

AUTOPTRH2 = MSB(&EP8FIFOBUF); AUTOPTRL2 = LSB(&EP8FIFOBUF);

for(i = 0x0000; i < myBufferCount; i++)

{

/* setup to transfer EP4OUT buffer to EP8IN buffer using AUTO- POINTER(s) in

SFR space */

EXTAUTODAT2 = EXTAUTODAT1;

}

SYNCDELAY;

EP8BCH = MSB(myBufferCount); SYNCDELAY;

EP8BCL = LSB(myBufferCount);// arm EP8IN

}

6.2.2 Building Bulksrc Firmware Example Code for EZ-USB RAM and EEPROM

Click the Project>Build Target option at the top left corner of the IDE. The Total Code Bytes of the Bulksrc

firmware example is less than the 4-KB code limit of the Keil µVision2 IDE provided with the kit. The output of
the Build Target is the bulkext.hex and bulkext.iic files.

6.2.3 Download Firmware Image to EZ-USB Internal RAM and EEPROM

Refer to sections Download Firmware Image to External I2C EEPROM and Download Firmware Image to
Internal RAM.

6.2.4 Binding Cypress USB Driver for the Downloaded Firmware Image

The Bulksrc firmware uses vendor-class (0xFF) with VID/PID 0x04B4/1004. This example should bind with the
generic USB driver, CyUSB3.sys, and driver information file, CyUSB3.inf which contains the relevant VID/PID of

this example. Follow the procedure outlined in Binding Cypress USB Driver for the Downloaded Firmware

User Guide 36 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

Image to manually bind the driver using the Windows Hardware Wizard. If you have performed the binding

process for any one of the previous firmware examples, you can skip it for this example.

6.2.5 Testing Bulksrc Firmware Functionality

The Bulksrc firmware functionality can be tested using the USB Control Center utility as follows.

Figure 40 Bulksrc Firmware Internals

Open the USB Control Center application (CyControl.exe) from the location <FX3 SDK Installed

directory>\<version>\ application\c_sharp\controlcenter\bin\Release. Observe that the EZ-USB FX2LP is listed as
“Cypress FX2LP Sample Device”.

1. Select Bulk out endpoint (0x02) in the left pane of the USB Control Center and keep clicking the Transfer

Data-OUT button in the Data Transfers tab on the right. You can perform any number of OUT transfers on
bulk out endpoint (0x02).

2. Similarly, select Bulk In endpoint (0x86) and keep clicking the Transfer Data-IN button in the Data
Transfers tab. You can see the USB Control Center receiving multiple packets (incremental data from 02)

from this bulk IN endpoint.

Figure 41 Bulksrc Firmware- EP2 to EP

User Guide 37 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

3. Select Bulk out endpoint (0x04) and keep clicking the Transfer Data-OUT button in the Data Transfers tab.

You can see the USB Control Center sending multiple packets to this bulk OUT endpoint.

4. Select Bulk In endpoint (0x88) and keep clicking the Transfer Data-IN button in the Data Transfers tab.

The data transferred on EP4 is exactly looped back to EP8. Internally, the loopback is performed through a

temporary buffer (myBuffer [512]).

Figure 42 Bulksrc Firmware- EP4 to EP8

User Guide 38 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

6.3 EP_Interrupts Example

6.3.1 Description

The EP_interrupts example works in a similar manner as bulkloop on EZ-USB FX2LP. The major differences
include the addition of 64-byte EP1 as a bulk OUT/IN endpoint to the existing four endpoints: EP2, EP4, EP6,

and EP8. The endpoints are rearmed using their respective ISRs. Following are the interrupts for these
endpoints, which are used to schedule the data transfers.

• EP1: 64-byte bulk OUT/IN – ISR_Ep1in() and ISR_Ep1out()

• EP2: 512-byte bulk OUT – ISR_Ep2inout()

• EP4: 512-byte bulk IN – ISR_Ep4inout()

• EP6: 512-byte bulk OUT – ISR_Ep6inout()

• EP8: 512-byte bulk OUT – ISR_Ep8inout()

6.3.2 Building EP_Interrupts Firmware Example Code for EZ-USB RAM and

EEPROM

Click the Project > Build Target option at the top left corner of the IDE. The “Total Code Bytes” of the
EP_Interrupts firmware example is less than the 4-KB code limit of the Keil µVision2 IDE provided with the kit.
The output of the Build Target is the EP_Interrupts.hex and EP_Interrupts.iic files

6.3.3 Method to Program EP_Interrupts Firmware Image to EZ-USB Internal

RAM and EEPROM

Refer to sections Download Firmware Image to External I2C EEPROM and Download Firmware Image to
Internal RAM. After downloading, the firmware re-enumerates with the PC using its internal VID/PID

0x04B4/0x1004.

6.3.4 Binding Cypress USB Driver for the Downloaded Firmware Image

The EP_Interrupts firmware uses vendor class (0xFF) with VID/PID 0x04B4/1004. This example should bind with

the generic USB driver cyUSB3.sys and driver information file cyUSB3.inf, which contains the relevant VID/PID
of this example. Follow the procedure outlined to manually bind the driver using the Windows Hardware
Wizard. If you have performed the binding process for any one of the previous firmware examples, you can skip

it for this example.

6.3.5 Testing EP_Interrupts Firmware Functionality

The example firmware should be tested in a manner similar to the bulkloop example. The bulk data transfers
on EP1 are tested with a length of 64 bytes and 512 bytes for EP2, EP4, EP6, and EP8.

User Guide 39 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

Figure 43 EP_Interrupts Firmware Device Internals

1. Select Bulk out endpoint (0x01) in the left pane of the USB Control Center, enter 64 in Byte to transfer text
box and click the Transfer Data-OUT button in the Data Transfers tab. Perform only one OUT transfers on

bulk out endpoint (0x01); multiple tries will cause a transfer failure.

2. Select Bulk in endpoint (0x81) in the left pane of the USB Control Center and click the Transfer Data-IN
button in the Data Transfers tab. EP1 is IN/OUT endpoint, and same data will be received.

3. Select Bulk out endpoint (0x02) in the left pane of the USB Control Center and click the Transfer Data-Out

button in the Data Transfers tab. Observe a total of 512 bytes with zero default values transfer from the PC

to the FX2LP board. Click the Transfer Data-OUT button again. The PC dispatches a second packet to
FX2LP.

4. Highlight the Bulk in endpoint (0x86) entry. The Transfer Data button now appears as Transfer Data-IN.

Click this button and observe a total of 512 bytes transfer from FX2LP to the host, which it displays as
hexadecimal values. Click the Transfer Data-IN button again. The second queued FX2LP packet transfers to

the host and this sequence confirms the double-buffered operation of the two endpoints.

5. Repeat steps 3 and 4 for Bulk out endpoint (0x04) and Bulk in endpoint (0x88).

6.4 IBN Firmware Example

6.4.1 Description

This example illustrates the configuration of EZ-USB to accept bulk data from the host and loop it back to the

host using an IN-BULK-NAK (IBN) interrupt. Click the ibn.Uv2 project file at <example project>\Firmware\ibn. In
the TD_init() function of the ibn.c file four endpoints are configured to handle bulk transfer: two OUT
endpoints and two IN endpoints. The four endpoints defined in the descriptor file must be configured in this

function with the following statements:

EP2CFG = 0xA2;

SYNCDELAY;

EP4CFG = 0xA0;

SYNCDELAY;

EP6CFG = 0xE2;

SYNCDELAY;

User Guide 40 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

EP8CFG = 0xE0

The key characteristics of each endpoint are as follows:

• Endpoint 2: OUT, bulk, double-buffered

• Endpoint 4: OUT, bulk, double-buffered

• Endpoint 6: IN, bulk, double-buffered

• Endpoint 8: IN, bulk, double-buffered

Writing to these registers typically takes more than the two clock cycles needed for a MOVX instruction.
Therefore, the SYNCDELAY macro is added. The EZ-USB Technical Reference Manual provides the list of
registers that need this delay function when writing to them. After they are configured, the OUT endpoints need
to be armed to accept packets from the host. Because the endpoints are double buffered, you must arm the

endpoint twice. Arming essentially frees up the buffers, making them available to receive packets from the
host.

By writing a ‘1’ to bit7 of the byte count register, the endpoint is armed.

EP2BCL = 0x80; // arm EP2OUT by writing byte count w/skip.

SYNCDELAY;

EP2BCL = 0x80;

SYNCDELAY;

EP4BCL = 0x80; // arm EP4OUT by writing byte count w/skip.

SYNCDELAY;

EP4BCL = 0x80;

The previous lines arm the two OUT endpoints by skipping two packets of data, making the buffers available to

receive OUT data.

NAKIRQ = bmBIT0; // clear the global IBN IRQ

NAKIE |= bmBIT0; // enable the global IBN IRQ

IbnFlag = 0x00; // clear our IBN flag

IBNIRQ = 0xFF; // clear any pending IBN IRQ

IBNIE |= bmEP6IBN | bmEP8IBN; // enable the IBN interrupt for EP6 and EP8

The firmware clears the IBN flags of all endpoints and any pending IBN interrupts and enables the IBN interrupt

for EP6 and EP8.

AUTOPTRSETUP |= 0x01;

This enables the auto-pointer used for data transfer in the TD_Poll() function. The loopback is implemented
in the TD_Poll function, which is called repeatedly when the device is idle. Endpoints 2 and 4 are armed to
accept data from the host. This data is transferred to endpoint 6 and endpoint 8 respectively. To implement

this, endpoint 2 is first checked to see if it has data by reading the endpoint 2 empty bit in the endpoint status
register (EP2468STAT). If endpoint 2 has data (sent from the host), then check if the host has requested data on

EP6 by reading the EP6 In-Bulk-Flag bit in the IbnFlag variable. If the host has requested data on EP6, then the
data is transferred.

This decision is executed by the following statement:

if (!(EP2468STAT & bmEP2EMPTY) && (IbnFlag & bmEP6IBN))

// if there is new data in EP2FIFOBUF and the IBN flag for EP6 has been set,

//then copy the data from EP2 to EP6

https://www.cypress.com/file/126446/download

User Guide 41 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

The data transfer is carried out by the execution of the following loop:

for(i = 0x0000; i < count; i++)

{

// setup to transfer EP2OUT buffer to EP6IN buffer using AUTOPOINTER(s)

EXTAUTODAT2 = EXTAUTODAT1;

}

As auto pointers are enabled, the pointers increment automatically.

EXTAUTODAT2 = EXTAUTODAT1;

After this statement transfers the data, endpoint 2 must be rearmed to accept a new packet from the host.

Endpoint 6 must be committed, making the FIFO buffers available to the host for reading data from endpoint 6.

This is accomplished by the following statements:

This is accomplished by the following statements:

EP6BCH = EP2BCH;

SYNCDELAY;

EP6BCL = EP2BCL; // commit EP6IN by specifying the number of bytes the host

can read //from EP6

SYNCDELAY;

EP2BCL = 0x80; // re (arm) EP2OUT

The EP6 IBN flag bit in the IbnFlag variable is cleared. The EP6 IBN interrupt request is cleared by setting the
corresponding bit in the IBNIRQ register. Finally, the EP6 IBN interrupt is enabled by setting the corresponding

bit in the IBNIE register.

IbnFlag &= ~bmEP6IBN; // clear the IBN flag

IBNIRQ = bmEP6IBN; // clear the IBN IRQ

IBNIE |= bmEP6IBN; // enable the IBN IRQ

The same operation is carried out to implement a data loop with endpoints 4 and 8. When the host requests an

IN packet from an EZ-USB bulk endpoint, the endpoint NAKs (returns the NAK PID) until the endpoint buffer is
filled with data and armed for transfer, at which point the EZ-USB at which point FX2LP answers the IN request
with data. Until the endpoint is armed, a flood of IN-NAKs can tie up bus bandwidth. Therefore, if the IN

endpoints are not always kept full and armed, it may be useful to know when the host is “knocking at the door,
requesting IN data.” The IBN interrupt provides this notification. It fires whenever a bulk endpoint NAKs an IN

request. The IBNIE/IBNIRQ registers contain individual enable and request bits for each endpoint, and the

NAKIE/NAKIRQ registers each contain a single-bit, IBN, that is the ORed combination of the individual bits in

IBNIE/IBNIRQ, respectively. The EZ-USB FX2LP firmware framework provides hooks for all the interrupts that it

implements. The example project uses the ISR_Ibn ISR to handle the IBN interrupt for EP6 and EP8.

void ISR_Ibn(void) interrupt 0

{

int i;

// disable IBN for all endpoints

IBNIE = 0x00;

EZUSB_IRQ_CLEAR(); // clear the global USB IRQ

// Find the EP with its IBN bit set

User Guide 42 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

for (i=0;i<8;i++)

{

if (IBNIRQ & (1 << i))

{

IbnFlag |= (1 << i); // set the appropriate IBN flag bit

IBNIRQ |= (1 << i); // clear the IBN IRQ for this endpoint

}

}

NAKIRQ |= bmBIT0; // clear the global IBN IRQ

// re-enable IBN interrupt for any endpoints that don't already have

// an IBN pending in IbnFlag

IBNIE = (bmEP6IBN | bmEP8IBN) & ~IbnFlag;

}

6.4.2 Building Firmware Example Code for EZ-USB RAM and EEPROM

Click the Project > Build Target option at the top left corner of the IDE. The firmware example builds
successfully since the “Total Code Bytes” of the IBN firmware example is less than the 4-KB code limit of the

Keil µVision2 IDE provided with the kit. The output of the Build Target is the ibn.hex and ibn.iic files.

6.4.3 Method to Download Firmware Image to EZ-USB Internal RAM and

External EEPROM

Refer to sections Download Firmware Image to External I2C EEPROM and Download Firmware Image to

Internal RAM. After downloading, the firmware re-enumerates with the PC using its internal VID/PID

0x04B4/0x1004.

6.4.4 Binding Cypress USB Driver for the Downloaded Firmware Image

The IBN project uses vendor-class (0xFF) with VID/PID 0x04B4/1004. This example should bind with the generic
USB driver, CyUSB3.sys, and the driver information file, CyUSB3.inf, which contains the relevant VID/PID of this

example.

User Guide 43 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

6.4.5 Testing the IBN Firmware Functionality

Figure 44 IBN Firmware Device Internals

Following are the detailed steps to test the functionality.

1. After the board enumerates, use the USB Control Center to send 512 bytes from EP2 to EP6. The data

received should be the same as the data sent. The host can send 512 bytes of user-defined data to endpoint
2 using the USB Control Center. For example, select Bulk out endpoint (0x02) in the left pane of the USB

Control Center and select the Data Transfers tab. In the Data Transfers tab, enter the Bytes to Transfer as
‘512’ and then click the Transfer Data-OUT button.

2. This data can be read back from endpoint 6 using the USB Control Center. For example, select Bulk in
endpoint (0x86) in the left pane of the USB Control Center and select the Data Transfers tab. In the Data

Transfers tab, enter the number of Bytes to Transfer as ‘512’ and then click the Transfer Data-IN button to
read back the data. Similarly, loopback using endpoints 4 and 8 can also be tested. Since EP2 and EP4 are

double buffered, they can contain only two packets of data.

3. On sending a packet to these endpoints when both the buffers are full, the endpoints NAK the transfer
because there is no space available. If an IN transfer is requested on either EP6 or EP8, the corresponding

IBN interrupt is asserted and data is transferred from EP2 to EP6 or from EP4 to EP8. This data appears in

the USB Control Center window.

4. You can test the previous steps by trying to send data to EP2 and EP4 without reading the data out of EP6 or
EP8. After the first two transfers, all the successive OUT transfers fail. This persists until an IN transfer is
made on EP6 or EP8.

6.5 Pingnak Firmware Example

6.5.1 Description

This project illustrates the configuration of the EZ-USB device to accept bulk data from the host and loop it
back to the host and the use of the PING-NAK interrupt. Click pingnak.Uv2 located at <example

project>\Firmware\pingnak and observe the code. Four endpoints are configured in the TD_init() function of
pingnak.c to handle bulk transfer: two OUT endpoints and two IN endpoints. The four endpoints defined in the
descriptor file must be configured in this function with the following statements:

EP2CFG = 0xA2;

SYNCDELAY;

EP4CFG = 0xA0;

User Guide 44 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

SYNCDELAY;

EP6CFG = 0xE2;

SYNCDELAY;

EP8CFG = 0xE0

The key characteristics of each endpoint are as follows:

• Endpoint 2: OUT, bulk, double buffered

• Endpoint 4: OUT, bulk, double buffered

• Endpoint 6: IN, bulk, double buffered

• Endpoint 8: IN, bulk, double buffered

Writing to these registers typically takes more than the two clock cycles needed for a MOVX instruction.
Therefore, the SYNCDELAY macro is added. The EZ-USB Technical Reference Manual the list of registers that

need this delay function when writing to them. After they are configured, the OUT endpoints need to be armed
to accept packets from the host. Because the endpoints are double buffered, you must arm the endpoint twice.

Arming essentially frees up the buffers, making them available to receive packets from the host. By writing a ‘1’

to bit 7 of the byte count register, the endpoint is armed.

EP2BCL = 0x80; // arm EP2OUT by writing byte count w/skip.

SYNCDELAY;

EP2BCL = 0x80;

SYNCDELAY;

EP4BCL = 0x80; // arm EP4OUT by writing byte count w/skip.

SYNCDELAY;

EP4BCL = 0x80;

After configuration, the OUT endpoints are 'armed' to accept data from the host. An OUT endpoint is said to be

armed if it is ready to accept data from the host. Each endpoint is configured as double buffered. The OUT
endpoints are armed by setting the skip bit in the byte count registers. This leaves them empty to receive a new
packet from the host. It also clears any pending PING-NAK interrupts and enables the PING-NAK interrupt for

EP2 and EP4. The loopback is implemented in the TD_Poll() function that is called repeatedly when the

device is idle. Endpoints 2 and 4 are armed to accept data from the host. This data is transferred to endpoint 6
and endpoint 8 respectively. First, endpoint 2 is checked to see if it has data by reading the endpoint 2 empty

bit in the endpoint status register (EP2468STAT). If endpoint 2 has data (sent from the host), the capability of
endpoint 6 to receive the data is checked by reading the endpoint 6 full bit in the endpoint status register. If
endpoint 6 is not full, then the data is transferred. This decision is executed by the following statements:

if (!(EP2468STAT & bmEP2EMPTY))

{// check EP2 EMPTY (busy) bit in EP2468STAT (SFR), core set's this bit when

// FIFO is empty

if (!(EP2468STAT & bmEP6FULL))

{// check EP6 FULL (busy) bit in EP2468STAT (SFR), core set's this bit

// when FIFO is full

The data pointers are initialized to the corresponding buffers. The first auto-pointer is initialized to the first

byte of the endpoint 2 FIFO buffer. The second auto-pointer is initialized to the first byte of the endpoint 6 FIFO
buffer. The number of bytes to be transferred is read from the byte count registers of endpoint 2. The registers
EP2BCL and EP2BCH contain the number of bytes written into the FIFO buffer by the host. These two registers
give the byte count of the data transferred to the FIFO in an OUT transaction as long as the data is not

https://www.cypress.com/file/126446/download

User Guide 45 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

committed to the peripheral side. This data pointer initialization and loading of the count is done in the

following statements:

APTR1H = MSB(&EP2FIFOBUF); // Initializing the first data pointer

APTR1L = LSB(&EP2FIFOBUF);

AUTOPTRH2 = MSB(&EP6FIFOBUF); // Initializing the second data pointer

AUTOPTRL2 = LSB(&EP6FIFOBUF);

count = (EP2BCH << 8) + EP2BCL; // The count value is loaded from the byte //

count registers

The data transfer is carried out by the execution of the following loop:

for(i = 0x0000; i < count; i++)

{

// setup to transfer EP2OUT buffer to EP6IN buffer using AUTOPOINTER(s)

EXTAUTODAT2 = EXTAUTODAT1;

}

Because auto-pointers have been enabled, the pointers increment automatically, and the statement

EXTAUTODAT2 = EXTAUTODAT1;

transfers data from endpoint 2 to endpoint 6. Each time the statement is executed, the auto-pointer is

incremented. It is executed repeatedly to transfer each byte from endpoint 2 to endpoint 6. After the data is

transferred, endpoint 2 has to be rearmed to accept a new packet from the host. Endpoint 6 has to be
committed, making the FIFO buffers available to the host for reading data from endpoint 6. This is

accomplished by the following statements:

EP6BCH = EP2BCH;

SYNCDELAY;

EP6BCL = EP2BCL; // commit EP6IN by specifying the number of bytes the

host can read from EP6

SYNCDELAY;

EP2BCL = 0x80; // re (arm) EP2OUT

The same operation is carried out to implement a data loop with endpoints 4 and 8.

High-speed USB implements a PING-NAK mechanism for (bulk and control) OUT transfers. When the host
wishes to send OUT data to an endpoint, and the previous data transfer was answered with a NYET, it first
sends a PING token to see if the endpoint is ready (for example, if it has an empty buffer). If a buffer is not

available, the FX2LP returns a NAK handshake. PING-NAK transactions continue to occur until an OUT buffer is
available, at which time the FX2LP answers a PING with an ACK handshake and the host sends the OUT data to

the endpoint. EZ-USB implements PING-NAK interrupt as EP0PING, EP1PING, and so on, one for each endpoint.
The EPxPING interrupt is asserted when the host PINGs an endpoint and the FX2LP responds with a NAK

because the particular endpoint buffer memory is not available. The FX2LP firmware framework provides hooks
for all the interrupts that it implements. The example project uses the ISR_Ep2pingnak and ISR_Ep4ping-nak
ISRs to handle EP2PING and EP4PING interrupts respectively.

void ISR_Ep2pingnak(void) interrupt 0

{

SYNCDELAY; // Rearm endpoint 2

EP2BCL = 0x80;

User Guide 46 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

EZUSB_IRQ_CLEAR(); // clear the EP2PING interrupt

NAKIRQ = bmEP2PING;

}

The ISR_Ep2pingnak discards the previous data that is stored in one of the buffers of endpoint 2 by rearming

the endpoint (that is, EP2BCL = 0x80). Therefore, EP2 can now receive the data that is currently being sent by
the host because there is space available in one of its buffers. It then clears the interrupt by setting a particular

bit in NAKIRQ because it has been serviced. The same operation is carried out to service the EP4PING interrupt
in ISR_Ep4pingnak.

6.5.2 Building Firmware Example Code for EZ-USB RAM and EEPROM

Click the Build Target button at the top right corner of the IDE. The “Total Code Bytes” of the pingnak firmware

example is less than the 4-KB code limit Keil µVision2 IDE provided with the kit. The output of the Build Target is
pingnak.hex and pingnak.iic files.

6.5.3 Method to Download Firmware Image to EZ-USB Internal RAM and

External EEPROM

Refer to sections Download Firmware Image to External I2C EEPROM and Download Firmware Image to
Internal RAM. After downloading, the firmware re-enumerates with the PC using its internal VID/PID

0x04B4/0x1004.

6.5.4 Binding Cypress USB Driver for the Downloaded Firmware Image

The pingnak project uses vendor class (0xFF) with VID/PID 0x04B4/1004. This example should bind with the

generic USB driver, cyUSB3.sys, and the driver information file, CyUSB3.inf, which contains the relevant
VID/PID of this example. Follow the procedure outlined to manually bind the driver using the Windows

Hardware Wizard. If you have performed the binding process for any one of the firmware examples, you can
skip it for this example.

6.5.5 Testing the Pingnak Firmware Functionality

Figure 45 Pingnak Firmware Device Internals

User Guide 47 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

Follow these steps to test the pingnak firmware with a USB 2.0 connection.

1. After the board re-enumerates, use the USB Control Center to send 512 bytes from EP2 to EP6. The data
received should be the same as the data sent. You can send 512 bytes of user-defined data from the host to

endpoint 2 using the USB Control Center. For example, select Bulk out endpoint (0x02) in the left pane of

the USB Control Center and select the Data Transfers tab. In the Data Transfers tab, enter the Bytes to
Transfer as ‘512’ and then click the Transfer Data-OUT button.

2. This data can be read back from endpoint 6 using the USB Control Center. For example, select Bulk in

endpoint (0x86) in the left pane of the USB Control Center and select the Data Transfers tab. In the Data
Transfers tab, enter the number of Bytes to Transfer as ‘512’ and then click the Transfer Data-IN button to

read back the data. Similarly, loopback using endpoint 4 and 8 can also be tested. Because EP2 and EP4 are
double buffered, they can contain only two packets of data. After sending a packet to these endpoints when
both the buffers are full, the endpoints NAK the transfer because there is no space available. This asserts the

PING-NAK interrupt of the NAKing endpoint.

Figure 46 Pingnak Firmware Transfer EP2-EP6

3. The ISRs that handle the PING-NAK interrupt (ISR_Ep2pingnak and ISR_Ep4pingnak) discard the previous
data that is stored in one of the endpoint buffers by rearming the endpoint. Therefore, the endpoints can

receive the data that is currently sent by the host because there is space in one of its buffers.

4. You can test the previous steps by continuously sending data to EP2 and EP4 without reading the data out
of EP6 or EP8. Because the PING-NAK ISR rearms the endpoints, you can continuously transmit data to EP2
and EP4, and the transfer always succeeds. The data present in the buffers of EP2 and EP4 at any point of

time will be the latest two packets of data sent from the host.

User Guide 48 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

Figure 47 Pingnak Firmware Transfer EP4-EP8

6.6 Vend_ax Firmware Example

6.6.1 Description

This example demonstrates the use of different vendor commands. Vendor commands are used to accomplish
unique tasks, such as EZ-USB reset, RAM download, setting a different frequency for the FX2LP I2C interface,

communicate with an external SRAM, and so on. The vendor commands are defined in the vend_ax.c source file
of the example. Open the project by clicking on vend_ax.uv2, located at <example project>\Firmware\vend_ax

and observe the vendor commands implemented in the C routine - DR_VendorCmnd (void). Following are the

vendor commands defined in the vend_ax.c file:

Table 3 Vendor Command Definitions in vend_ax Example

Sl. No. Vendor Command/Macro Definition Function

1 0xA3/ VR_RAM Downloads data to internal or external RAM

2 0xA6/VR_GET_- CHIP_REV Retrieves the current revision of EZ-USB FX2LP

3 0xA8/VR_RENUM The EZ-USB device disconnects and reconnects.

4 0xA9/VR_DB_FX
Selects double-byte addressed large EEPROM U5 and the

contents can be uploaded or downloaded to EEPROM

5 0xAA/VR_I2C_100 Sets the I2C interface to 100 kHz

6 0xAB/VR_I2C_400 Sets the I2C interface to 400 kHz

6.6.2 Building Firmware Example Code for EZ-USB RAM and EEPROM

Click the Build Target button at the top right corner of the IDE. The “Total Code Bytes” of the vend_ax firmware
example is less than the 4-KB code limit Keil µVision2 IDE provided with the kit. The output of the Build Target is
vend_ax.hex and vend_ax.iic files.

User Guide 49 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

6.6.3 Method to Download Firmware Image to EZ-USB Internal RAM and

External EEPROM

Refer to sections Download Firmware Image to External I2C EEPROM and Download Firmware Image to
Internal RAM. After downloading, the firmware re-enumerates with the PC using its internal VID/PID

0x04B4/0x1004.

6.6.4 Testing the vend_ax Example

Figure 48 Vend_ax Firmware Device Internals

6.6.4.1 0xA3 command-Download data to RAM

This command is used to download data to either the EZ-USB internal (0x0000–0x3FFFF) RAM or the external
RAM memory.

To write the contents to RAM, select Direction = Out, Req Type = Vendor, Target = Device, Bytes to Transfer = 8,

and Req Code = 0xA3, and enter data to send as C2 B4 04 84 00 01 00 11 in the Data to send (Hex) box. Click

the Transfer Data button and observe the RAM getting programmed. Figure 49 summarizes the entire

operation.

Figure 49 A3 Vendor Command Write Operation using USB Control Center

User Guide 50 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

To read the contents from RAM, select Direction = In, Req Type = Vendor, Target = Device, Bytes to Transfer = 8,

and Req Code = 0xA3. Click the Transfer Data button and observe that the RAM written previously matches the
read data. Figure 50 summarizes the entire operation.

Figure 50 A3 Vendor Command Read Operation using USB Control Center

6.6.4.2 0xA6 command – Get Chip Revision

To retrieve the current revision of the EZ-USB FX2LP) device, this command is used. Figure 51 summarizes the

entire operation using the USB Control Center.

Figure 51 A6 Vendor Command using USB Control Center

6.6.4.3 0xA8 command – EZ-USB Re-enumeration

This command is used to disconnect and re-connect the EZ-USB FX2LP device using the CPUCS register. The

EZ-USB re-enumerates. Observe the Cypress device disappearing from the USB Control Center window and
reappearing in the same window. Figure 52 summarizes the command trigger using the USB Center.

User Guide 51 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

Figure 52 A8 Vendor Command Operation using USB Control Center

6.6.4.4 0xA9 command – Read/Write Large EEPROM

To read/write the contents of Large EEPROM, select Direction = In/OUT, Req Type = Vendor, Target = Device.

Bytes to Transfer automatically gets updated if there is pre-defined data.

C2 47 05 31 21 00 00 04 00 03 00 00 02 14 00 00 41 14 00 75 81 5F 91 07 80 FC 90 88 00 E0 91 38 90 98 00 E0 91 38
90 A8 00 E0 91 38 90 B8 00 E0 91 38 90 80 00 E0 91 38 90 90 00 E0 91 38 90 A0 00 E0 91 38 90 B0 00 E0 91 38 22 7A

04 D8 FE D9 FC DA FA 22 80

Figure 53 A9 Vendor Command Write Operation using USB Control Center

User Guide 52 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

Figure 54 A9 Vendor Command Read Operation using USB Control Center

6.6.4.5 0xAA/0xAB – Setting I2C interface frequency

Using this command, the I2C interface frequency can be set to 100 kHz or 400 kHz. 0xAA command sets the I2C

interface frequency to 100 kHz and 0xAB command sets the I2C interface frequency to 400 kHz. Figure 55

summarizes the command trigger using the USB Control Center.

Figure 55 AA/AB Vendor Command Operation using USB Control Center

6.7 KBAs Associated with the Discovery Kit

This section explains the knowledge base articles (KBA) associated with the CY3689 FX2LP Discovery Kit.

User Guide 53 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Firmware Examples

6.7.1 KBA229176 - Cypress EZ-USB FX2LP-based Logic Analyzer

This KBA explains the procedure to use the CY3689 FX2LP Discovery Kit as a Logic Analyzer using the sigrok

PulseView signal analysis tool.

6.7.2 KBA229175 - Debugging of FX2LP Firmware using I2C

The FX2LP I2C controller acts as a master and can be connected to an I2C slave for sending debug messages.
This KBA discusses the steps to configure and receive debug messages from FX2LP over an I2C interface.

6.7.3 KBA229648 - FX2LP I2C-based Debug with SDCC on Eclipse IDE

This KBA discusses the steps to configure the project on Eclipse IDE to receive debug messages from FX2LP

over an I2C interface.

6.7.4 KBA30768 - Lattice Crosslink FPGA Configuration and UVC Color Bar Video

Streaming

This KBA documents the details about implementation of FPGA configuration and UVC framework on FX2LP

firmware. It uses Lattice Crosslink FPGA to generate and stream color bar video. The firmware example
attached with this KBA binds with the standard UVC driver of the host PC/mobile phone. The color bar is

generated on FPGA and streamed by FX2LP firmware.

https://community.cypress.com/docs/DOC-18867
https://community.cypress.com/docs/DOC-18866
https://community.cypress.com/docs/DOC-19424
https://community.cypress.com/docs/DOC-20048

User Guide 54 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Troubleshooting the Kit

7 Troubleshooting the Kit

Table 4 Troubleshooting

Issue Possible Cause Troubleshooting Procedure

1 Discovery kit failed to enumerate
as a Cypress FX2LP No EEPROM

Device

Automatic driver binding

failed

Manual Driver Binding. Follow the
procedure in Binding Driver

Manually

Incorrect driver binding Right-click the enumerated device and

uninstall driver

Perform manual driver binding

2 No enumeration Discovery Kit not powered Check whether power LED (LED1) is
ON; if LED1 is not ON, press SW1 to

power the kit

Faulty USB cable Change the USB Micro-B cable

Faulty USB port on the PC Try on a different USB port on the PC

Firmware programmed in
the kit having different

VID/PID

• Fix the firmware with compatible
logic and VID/PID

• Rebuild the project

• Remove J2 jumper and reset the kit

• Kit enumerates as a Cypress FX2LP
No EEPROM Device

• Reconnect J2 and program with

correct firmware

Firmware programmed in
the kit is not compatible with
kit resources or firmware

logic incorrect

3 Programming failed Incorrect jumper setting Refer to Jumper Settings for the

correct jumper settings to program

external EEPROM or internal RAM

Incorrect file format EEPROM firmware update requires .iic

file and RAM firmware update requires
.hex file. Choose the correct file and

retry programming

User Guide 55 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Appendix – Board Schematic

Appendix – Board Schematic

User Guide 56 of 57 002-31522 Rev. **

 2020-11-06

CY3689 EZ-USB FX2LP Discovery Kit Guide

Revision History

Revision History

Document

version

Date of release Description of changes

** 06-11-2020 Initial version of guide

Published by

Infineon Technologies AG

81726 München, Germany

© 2020 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

Edition 2020-11-06

002-31522 Rev. **

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

