

54mm 1U Front-End DC-DC Power Supply Converter

FEATURES

- 1,200W continuous main output power 12V main output and 12Vsb output or pin selectable 3.3/5V standby output Dinkle DT-7C-B14W-02 Input Terminal Block Low-profile package 54.5mm x 228.6mm x 40mm >39W/in³ density N+1 redundant, hot-swap ready Rapid ON Cold Redundant capability Active (digital) current sharing on 12V main output; Integral ORing /isolation provided for both outputs Internal variable speed cooling fan Output voltage, current, and temperature protected ■ PMBus[™] 1.2 with LED status indicators
- RoHS compliant
- Two-year warranty

PRODUCT OVERVIEW

D1U54S-D-1200-12-HxxC series of 1200W highly efficient, DC-DC front-end power supply converters provide a 12Vdc main output. These power modules adopt an active current-sharing feature for parallel or redundant operation and are fully protected from over-voltage, over-current, and over-temperature faults, and also includes a standby output.

LED status indicators and corresponding hardware logic signals are provided in addition to a comprehensive PMBusTM1.2 compliant digital communication bus. These features provide status monitoring, configuration, and control capability.

The slim, compact 1U package achieves >39W/in³ and is ideal for delivering robust power to servers, workstations, storage, network systems, or other applications requiring 12V distributed power architecture.

ORDERING GOIDE'					
Part Number	Output Power ²	Main Output	Standby Output	Airflow Direction	MPS Model
D1U54S-D-1200-12-HB3C			12Vdc	F→B	M2105
D1U54S-D-1200-12-HB4C	1200W	12Vdc	3.3/5Vdc ³	B→F	M2106
D1U54S-D-1200-12-HU3C	120000	12VUC		F→B	M2107
D1U54S-D-1200-12-HU4C				B→F	M2108

¹ Unless otherwise noted, performance based on +25°C ambient, nominal Vin, full-rated load, in a free-flowing air environment

² 5VSB models, total Pmax.: 1215W; 3.3VSB models, total Pmax.:1210W

³ User selectable

INPUT CHARACTERISTICS					
Parameter	Conditions	Min.	Nom.	Max.	Units
DC Input Voltage operating range		-44	-4860	-72	Vdc
Maximum current	-4860Vdc Vin nominal			30	Adc
Inrush Current (see Figure 13)	Cold start, 0-200msec from application of DC input			100	Apk
Reverse Polarity Protection	Reversed input cables; no internal/external fuse failure	+40		+72	Vdc
Efficiency, Vin=54Vdc (see	20% Load	92			
Figure 12)	50% Load	94			%
	100% Load	91			

OUTPUT CHARACTERISTICS Voltage Nom. Conditions Min. Max. Units Parameter Output Set Point 50% load; Tamb =25°C 12.00 Vdc Output Set Point -0.5 +.5 % Accuracy -2 Line and Load Regulation Setpoint, temperature, line and load % +2 12V Main mV p 20MHz bBandwidth 120 Ripple Voltage & Noise⁴ р Output Current Range Λ 100 50°C max. А Load Capacitance 500 30,000 μF 12.00 **Output Set Point** 50% load; Tamb = 25° C Vdc -5% Line and Load Regulation Setpoint; temperature; line and load +5% Vdc mV p 12VSB 20MHz Bandwidth 120 Ripple Voltage & Noise⁴ р **Output Current** 2 0 A Load Capacitance 1.000 иF 3.3 **Output Set Point** 50% load; Tamb = 25°C Vdc -5% Line and Load Regulation Setpoint; temperature; line and load +5% Vdc mV p 3.3VSB Ripple Voltage & Noise⁴ 20MHz Bandwidth 120 р Output Current 0 3 A Load Capacitance 3,000 иF 50% load; Tamb = 25°C 5.0 Output Set Point Vdc Line and Load Regulation Setpoint; temperature; line and load -5% +5% Vdc mV p-5.0VSB 20MHz Bandwidth 120 Ripple Voltage & Noise⁴ р Output Current 0 3 А Load Capacitance 3,000 иF

Ripple and noise are measured with 0.1 µF of ceramic capacitance and 10 µF of tantalum capacitance on each of the power supply outputs. A short coaxial cable to the measurement 'scope input is used.

54mm 1U Front- End DC-DC Power Supply Converter

Murata Power Solutions

OUTPUT CHARACTERISTICS CONTINUED					
Parameter	Conditions	Min.	Тур.	Max.	Units
Start-up time	DC ramp up			3	S
Transient response, all outputs	50% load step, 1A/µs di/dt from, >10%			±5	%
	maximum load			500	μs
Current sharing accuracy (Main 12V output only)	>10% load; (* percentage of full load)			±5*	%
Hot Swap transients				±5	%
Holdup time	Full input source range; $\leq 80\%$ max. load	0.9			ms

Parameter	Conditions	Min.	Тур.	Max.	Units
Storage Temperature Range		-40		70	°C
Operating Temperature Range	Unobstructed airflow. See the airflow performance curves below for additional -5 conditions.			55	°C
Operating Humidity	Noncondensing	5		92	%
Storage Humidity		5		95	
Altitude (without derating at 40°C)				3000	m
Shock	30G non-operating				
Operational Vibration	Sine sweep; 5-200Hz, 2G; random vibration, 5-500Hz, 1.11G				
MTBF(Target)	Per Telcordia SR-332 M1C1 @40°C		400K		hrs
Safety Certification Standards	IEC 62368-1:2018 EN 62368-1:2020+A11:2020 CSA C22.2 No. 62368-1:19, UL 62368-1, 3rd Ec GB17625.1-2022(Class A), GB4943.1-2022, GB, TUV SUD: EN IEC 62638-1:2020/A11:2020		Class A)		
Input Fuse	Power Supply has an internal non-resettable fast blow fuse.				
Weight	Approximately 0.843 KG				

ISOLATION CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Insulation Safety Rating/Test Voltage	Input to Output - Reinforced	1000			Vdc
Functional Isolation (not factory tested)	Output to Chassis	100			Vdc

54mm 1U Front- End DC-DC Power Supply Converter

PROTECT	ION CHARACTERISTICS				
Output	Parameter	Conditions	Min.	Max.	Units
	Overtemperature (intake)	Auto restart with 4°C hysteresis for recovery (warning issued at 70°C)	70	80	°C
	Overvoltage	Latching	13.0	14.5	V
12V	Overcurrent	The output latches off after 5 automatic retries (1Sec interval between retries). The latch is cleared by toggling PS_ON_L signal (B4) or by recycling the incoming voltage.	105	130	Α
12 VSB	Overvoltage	Latching	13.0	14.5	V
12 120	Overcurrent	Hiccup - two seconds between retries while fault condition persists.	2.1	2.8	Α
	Overvoltage	Latching	3.6	4.0	V
3.3 VSB	Overcurrent	Hiccup	3.5	4.5	Α
5.0 VSB	Overvoltage	Latching	5.4	6.0	V
	Overcurrent	Hiccup	3.5	4.5	Α

EMISSIONS AND IMMUNITY	EMISSIONS AND IMMUNITY				
Characteristic	Standard	Compliance			
Input Current Harmonics	IEC/EN 61000-3-2	Complies			
Voltage Fluctuation and Flicker	IEC/EN 61000-3-3	Complies			
Conducted Emissions	FCC 47 CFR Part 15 CISPR 22/EN55022	Class A with 6dB margin			
ESD Immunity	IEC/EN 61000-4-2	Level 4 criteria A			
Radiated Field Immunity	IEC/EN 61000-4-3	Level 3 criteria A ⁵			
Electrical Fast Transients/Burst Immunity	IEC/EN 61000-4-4	Level 3 criteria A			
Surge Immunity	IEC/EN 61000-4-5	1) EN61000-4-5, Lev. 3 (Com. Mode: 2kV, 12 Ω , Diff. Mode: 1kV, 2 Ω), criteria A 2) GR-1089-CORE (NEBS) Level 1 Table 4-30 (Com/Diff. Mode: 2kV, 2 Ω)			
RF Conducted Immunity	IEC/EN 61000-4-6	Level 3 criteria A			
5 Contingent upon final system design					

⁵ Contingent upon final system design.

LED Name	LED Mode	LED State/Operation	Description
Input LED	ОК	Solid Green	Input voltage operating within normal specified range
			Input voltage operating in:
Input LED	OV/UV WARNING	Blinking Green	1) overvoltage warning, or
			2) undervoltage warning range
			Input voltage operating:
Input LED	OFF OR FAULT	Off	1) above over-voltage range, or
	UT UN TAULT	UII	2) below under-voltage range, or
			3) not present
Output LED	POWER GOOD	Solid Green	Main output and standby output enabled with no power supply warning or fault detected
Output LED	STANDBY	Blinking Green	Standby output enabled with no power supply warning or fault detected
Output LED	WARNING	Blinking Amber	Power supply warning detected as per PMBus™ STATUS_X reporting bytes
Output LED	FAULT	Solid Amber	Power supply fault detected as per PMBus™ STATUS_X reporting bytes

LED status reflects the PMBus status bit flags however while the bit flags are "sticky", requiring "Clear_Faults" command to be written via PMBus, or recycle of input power. LED state is "real-time" and reflects current conditions, returns to normal as soon as fault or warning condition is removed.

ADDRESS SELECTION TABLE PMBus SLAVE DEVICES				
ADDR pin (A3) resistor to GND (K-ohm, 1%)	Power Supply Main Controller (Serial Communications Slave Address)	Power Supply External EEPROM (Serial Communications Slave Address)		
0.82	0xB0	0xA0		
2.7	0xB2	0xA2		
5.6	0xB4	0xA4		
8.2	0xB6	0xA6		
15	0xB8	0xA8		
27	0xBA	OxAA		
56	0xBC	OxAC		
180	0xBE	0xAE		

.

54mm 1U Front- End DC-DC Power Supply Converter

www.murata.com/support

Signal	I/O	Description	Interface details
<u>INPUT OK</u>	In	The signal output is driven high when input source is available and within acceptable limits. The output is driven low to indicate loss of input power.	Pulled up internally via 10K to 3.3Vdc. A logic high >2.0Vdc A logic low <0.8Vdc Driven low by internal CMOS buffer (open drain output).
<u>SB SELECT</u>	In	 Selects the standby voltage for the HUxxAC models as follows: Left Open (no pull down)= 3.3Vdc is selected Pulled down to VSB Return = 5.0Vdc Once set and PSU operating, changing the setting requires recycling of the input voltage to be activated. 	Pulled up internally via 10K to VCC
<u>PW OK</u>	Out	Asserted (or driven high), by the power supply to indicate that both the main and standby outputs are valid. If any of the outputs fail then this output will be hi-Z or driven low. The output is driven low to indicate that an output is outside of lower limit of regulation.	Pulled up internally to 10K to VDD ¹ A logic high >2.0Vdc A logic low <0.8Vdc Driven low by internal CMOS buffer (open drain output).
<u>PS KILL</u>	In	This signal is used during hot swap to disable the main output during hot swap extraction. The input is pulled up internally to the internal housekeeping supply (within the power supply). The signal is provided on a short (lagging pin) and should be connected to +VSB_Return.	Pulled up internally via 10K to 3.3Vdc. A logic high >2.0Vdc A logic low <0.8Vdc Input is via CMOS Schmitt trigger buffer.
<u>SMB_ALERT</u>	Out	This signal is intended to alert the system when driven low, that the power supply has detected a fault condition, or that a VIN warning level has been detected. Refer to the PMBus ACAN for further details including supported STATUS_XX register bit flags and masking (SMBALERT_MASK supported). The signal is "Sticky" and requires "clear_faults" command to be written via PMBus or recycle of the input power to clear, however, the LED indicator is "real-time", automatically reverts to normal indication once the fault/warn condition is removed.	Pulled up internally via 10K to VDD ¹ . A logic high >2.0Vdc A logic low <0.8Vdc Driven low by internal CMOS buffer (open drain output).
PRESENT L (Power Supply Absent)	Out	The signal is used to detect the presence (installed) of a PSU by the host system. The signal is connected to PSU logic SGND within the PSU.	Passive connection to +VSB_Return. A logic low <0.8Vdc
PS_ON (PSU main output on/off control)	In	This signal is pulled up internally to the internal housekeeping supply (within the power supply). The power supply main 12Vdc output will be enabled when this signal is pulled low to +VSB_Return. In the low state the signal input shall not source more than 1mA of current. The 12Vdc output will be disabled (<0.15 VDC) when the input is driven higher than 2.4V, or is open-circuit. Cycling this signal shall clear latched fault conditions.	Pulled up internally via 10K to VDD ¹ . A logic high >2.0Vdc A logic low <0.8Vdc Input is via CMOS Schmitt trigger buffer.
ADDR (Address Select)	In	An analog input that is used to set the address of the internal slave devices (EEPROM and microprocessor) used for digital communications. Connection of a suitable resistor to +VSB_Return, in conjunction with an internal resistor divider chain, will configure the required address.	DC voltage between the limits of 0 and +VDD
<u>SCL</u> (Serial Clock)	Both	Serial clock line compatible with PMBus Power Systems Management Protocol Part 1 – General Requirements Rev 1.1. No additional internal capacitance is added that would affect the speed of the bus. The signal is provided with a series isolator device to disconnect the internal power supply bus in the event that the PSU is unpowered.	VIL is 0.8V maximum VOL is 0.4V maximum when sinking 3mA VIH is 2.1V minimum
<u>SDA</u> (Serial Data)	Both	Serial data line compatible with PMBus Power Systems Management Protocol Part 1 – General Requirements Rev 1.2. The signal is provided with a series isolator device to disconnect the internal power supply bus in the event that the PSU is unpowered.	VIL is 0.8V maximum VOL is 0.4V maximum when sinking 3mA VIH is 2.1V minimum
V1_SENSE & V1SENSE_RTN	In	Remote sense connections intended to be connected at and sense the voltage at the point of load. The voltage sense will interact with the internal module regulation loop to compensate for voltage drops due to connection resistance between the output connector and the load. If remote sense compensation is not required then the voltage can be configured for local sense by: 1. V1_SENSE directly connected to power blades 6 to 10 (inclusive) 2. V1_SENSE_RTN directly connected to power blades 1 to 5 (inclusive)	Compensation for up to 0.12Vdc total connection drop (output and return connections).
<u>ISHARE</u>	Both	The current sharing signal is connected between sharing units (forming an ISHARE bus). It is an input and/or an output (bi-directional analog bus) as the voltage on the line controls the current share between sharing units. A power supply will respond to a change in this voltage but a power supply can also change the voltage depending on the load drawn from it. On a single unit the voltage on the pin (and the common ISHARE bus would read 8VDC at 100% load (module capability). For two identical units sharing the same 100% load this would read 4VDC for perfect current sharing (i.e. 50% module load capability per unit).	Analogue voltage: +8V maximum; 10K to +12V_RTN

STATUS AND CONTROL SIGNALS

....

.

Murata Power Solutions

muRata

54mm 1U Front- End DC-DC Power Supply Converter

Signal	I/0	Description	Interface details
		RAPID_ON is compliant with Intel CRPS (cold redundant feature) and is a two-state analog signal that forms the cold redundant bus. Operation of the Cold redundant feature requires the RAPID_ON signals of up to four (4) installed redundant power supply modules to be tied together within the host/system, forming a common bus; there should be no system loading or interaction with this bus. PMBus write commands are required to activate colder redundant operation. Refer to the <u>application notes</u> for further details.	
<u>RAPID_ON</u> kdditional details:	вотн	 Rapid_ON functions: Pull-up bus voltage: Bus pull-up is provided by the single Power Supply Module, or the first Power Supply Module assigned the roll of "ACTIVE & MASTER" aka "COLD_REDUNDANT ACTIVE". More than one Power Supply Module can be assigned as "ACTIVE" only the first Power Supply Module assigned this roll provides the pull-up path and is why this Power Supply Module is referred to as the "Master". Each bus-connected Power Supply Module drives the Rapid_ON bus low when any fault is detected. Each bus-connected Power Supply Module powers on its main output rapidly within 100µs after detection of LOW state. 	RAPID_ON: Tri-State, driven high (3.3VDC) Cold_Red, Open or High Z = Standard_Red Driven low = Active_Cold_Red

TIMING SPECIFICATIONS

Unless otherwise specified, the following notes apply to all timing specifications:

- 1. Ta= 25°C, Vin & Vin nom. = -48V
- 2. Resistive load, 100% full load, both outputs

Min.

0ms

Typ.

2.5ms

Max.

6ms

54mm 1U Front- End DC-DC Power Supply Converter

Description

From the rising edge of PS_ON signal

to V1 falling below 90% V1 nom.

Turn-Off Timing

V1 PS_OFF delay

TIMING SPECIFICATIONS

V1; 12V

PS_ON

Input_OK

PW_OK

Unless otherwise specified, the following notes apply to all timing specifications:

- 1. Ta= 25° C, Vin & Vin nom. = -48V
- 2. Resistive load, 100% full load, both outputs

Turn-Off (Shutdown by PS_ON)

Vsb holdup

V1 holdup

PW_OK Hold Up

Input fail detect

. 11.6 Vdc

Input fail warning time

V1 Falltime

Vsb

Falltime

Power Removal Timing	Description	Min.	Max
Vsb holdup	From loss of Vin to Vsb falling to 90%; max. load capacitance	3ms	-
V1 holdup (Total Effective)	From loss of Vin to V1 falling to 90% Vout nom.; 80% load Max output capacitance (see <u>Figure 9</u>)	0.9ms	-
Input fail detect	From loss of Vin to falling edge of Input_OK signal (see <u>Figure 10</u>)	-	1ms
Input fail warning time	From falling edge of Input_fail detect to V1 falling to 90% Vout nom.; See		-
PW_OK Hold Up	From falling edge of Input_fail detect to V1 falling to 90% Vout nom (see Figure 11)	250us	-

54mm 1U Front- End DC-DC Power Supply Converter

PERFORMANCE DATA

54mm 1U Front- End DC-DC Power Supply Converter

PERFORMANCE DATA

54mm 1U Front- End DC-DC Power Supply Converter

54mm 1U Front- End DC-DC Power Supply Converter

Note "2" refers to the longest signal pin/power blade & "1" is the "shortest" signal pin such that the "shortest" is the "last to make, first to break" in the mating sequence.

Mating (system side) Part Number:

TE Connectivity part number 2-1926739-5

OUTPUT CONNECTOR PIN ASSIGNMENTS					
Pin	Signal Name	Comments	Pin	Signal Name	Comments
6,7,8,9,10	V1 (+12VOUT)	+12V Main Output	C3	<u>SDA</u>	I2C Serial Data Line
1, 2, 3, 4, 5	+12V RTN/PGND	+12V Main Output Return	D3	V1_SENSE_R	-VE Remote Sense Return
A1	+VSB	Standby Output	E3	V1_SENSE	+VE Remote Sense
B1	+VSB	Standby Output	A4	<u>SCL</u>	I2C Serial Clock Line
C1	+VSB	Standby Output	B4	<u>PS ON L</u>	Remote On/Off (Enable/Disable)
D1	+VSB	Standby Output	C4	SMB ALERT	Alert signal to the host system
E1	+VSB	Standby Output	D4	Unused	No End User Connection
A2	+VSB_Return	Standby Output Return	E4	INPUT OK	AC Input Source Present & "OK"
B2	+VSB_Return	Standby Output Return	A5	<u>PS_KILL</u>	Power Supply "kill"; short pin
C2	Rapid ON	No End User Connection	B5	ISHARE	Active Current Share Bus
D2	Unused	No End User Connection	C5	<u>PW OK</u>	Power "OK"; short pin
E2	Unused	No End User Connection	D5	SB SELECT	Standby voltage select pin
A3	ADDR	I2C Address Protocol Selection; (Select address by appropriate pull-down resistor See table for details)	E5	PRESENT L	Power Module Present; short pin
B3	Unused	No End User Connection			

54mm 1U Front- End DC-DC Power Supply Converter

¹ Wire selection for the DC source to power converter input terminal is dependent upon several factors that may vary with each deployment location, application to application. Factors that should be considered by end user when selecting the wire include the distance from power converter module to DC source (impacts voltage drop and therefore gauge), strand count, and insulation requirements including material or type, temperature and voltage ratings, and applicable local safety standards. The ring terminal options listed above are intended to provide a helpful starting point for the end user/system designer in selecting the wire that best meets the needs of each application, and any applicable local safety requirements.

54mm 1U Front- End DC-DC Power Supply Converter

1. Main Output current sharing is achieved using the active current

2. Current sharing functions with or without connection of the remote

combined output power must not exceed the rated standby power. The +VSB output has an internal ORING MOSFET for additional

3. +VSB Outputs can be tied together for redundancy however

4. ISHARE pin B5 is connected between sharing units (forming an

ISHARE bus). It is an input and/or an output (bi-directional analog

bus) as the voltage on the line controls the current share between

sharing units. A power supply will respond to a change in this

voltage; however, a power supply can also change the voltage

load this would read approximately 4VDC for perfect current sharing (for example, 50% load per unit). This bus is utilized by the PSU as method of detecting when to change redundancy

The load for both the main 12V and the VSB rails at initial startup

should not exceed the ratings of a single PSU. The load can be increased >3 seconds after input voltage is applied, to allow all

6. The Standby output can provide a degree of "droop" current sharing however current sharing accuracy of cannot be

on the pin (and the common ISHARE bus would read

status when operating in cold redundant mode.

sharing units to achieve steady state regulation.

depending on the load drawn from it. On a single unit the voltage

approximately 8VDC at 100% load. For two units sharing the same

CURRENT SHARING NOTES

V_SENSE to the common load.

redundancy/internal short protection.

share method.

5

guaranteed.

TYPICAL APPLIACTION

Vsb Return is internally connected to main 12V output return within the power supply module

MECHANICAL OUTLINE

Notes:

Not all fine details of the actual product is shown and the features of the actual product can vary in appearance. This is a graphical representation intended to facilitate 1) system design. Internal/visible part features, such as screw head patterns (Philips and TORX can be used interchangeable). Plastic part details can differ, such as logos, molding marks, and features for items that can be visible but inside the envelop such as the fan, connector, handle, and latch. For purposes of incoming QA inspection, it is recommended photos of actual sample and or a golden unit/sample be retained for inspection references. 2)

Drawing NTS

54mm 1U Front- End DC-DC Power Supply Converter

OPTIONAL ACCESSORIES		
Description	Part Number	
D1U54P-12-CONC Output Interface Connector Card	D1U54P-12-CONC	

APPLICATION NOTES		
Document Number	Description	Link
ACAN-64	D1U54P-12-CONC Output Interface Connector Card	URL Link to ACAN-64
ACAN-121	PMBus Communications Protocol	URL Link to ACAN-121
ACAN-112	Cold Redundancy Application Notes	URL Link to ACAN-112

Murata Power Solutions, Inc. 129 Flanders Rd. Westborough, MA 01581, USA. ISO 9001 REGISTERED

This product is subject to the following operating requirements and the Life and Safety Critical Application Sales Policy: Refer to: https://www.murata.com/products/power/requirements/ Murala Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, wi not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordanc therewith. Specifications are subject to change without notice.

©2023 Murata Power Solutions, Inc