

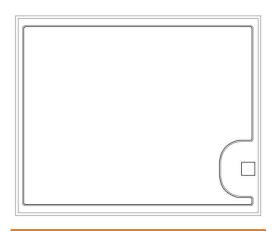
MOSFET – Power, Single N-Channel 30 V, 0.52 m Ω

NVCW3SS0D5N03CLA

Features

- Typical RDS(on) = $0.43 \text{ m}\Omega$ at VGS = 10 V
- Typical Qg(tot) = 139 nC at VGS = 10 V
- AEC-Q101 Qualified
- RoHS Compliant

DIMENSION (µm)


Die Size	3683 x 3000			
Scribe Width	80			
Source Attach Area	3462 x 2708			
Gate Attach Area	200 x 200			
Die Thickness	76.2			

Gate: AlCu

Source: Ti-NiV-Ag

Drain: Ti-Ni-Ag (back side of die)

Passivation: Polyimide Wafer Diameter: 8 inch Bad dice identified in Inking Gross Die Count: 2458

ORDERING INFORMATION

Device	Package			
NVCW3SS0D5N03CLA	Unsawn wafer on ring frame			

RECOMMENDED STORAGE CONDITIONS

Temperature	22 to 28°C
RH	44% to 66%

The Chip is 100% Probed to Meet the Conditions and Limits Specified at $T_J = 25^{\circ}C$

Symbol	Parameter	Condition	Min	Тур	Max	Unit
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	30	_	ı	V
I _{DSS}	Drain to Source Leakage Current	V _{DS} = 24 V, V _{GS} = 0 V	-	_	1	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = 20 V, V _{DS} = 0 V	-	_	100	nA
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.3	_	2.2	V
R _{DS(on)} *	Bare Die Drain to Source On Resistance	$I_D = 30 \text{ A}, V_{GS} = 10 \text{ V}$	ı	0.43	0.52	mΩ
		$I_D = 30 \text{ A}, V_{GS} = 4.5 \text{ V}$	-	0.68	0.85	mΩ

^{*}Accurate R_{DS(on)} test at die level is not feasible for this thin die as limited by the test contact precision attainable in a die form. The max R_{DS(on)} specification is defined from the historical performance of the die in package but is not guaranteed by test in production. The die R_{DS(on)} performance depends on the Source wire/ribbon bonding layout.

ABSOLUTE MAXIMUM RATINGS in Reference to the NVMFS4C01N electrical data in SO-8FL (T_J = 25°C unless otherwise noted)

Symbol	Parameter		Ratings	Unit
V _{DSS}	Drain to Source Voltage		30	V
V_{GS}	ate to Source Voltage		±20	V
I _D	Continuous Drain Current R _{0JC} (Note 1,3)	T _C = 25°C	370	Α
P _D	Power Dissipation R _{0JC} (Note 1,3)	T _C = 25°C	161	W
E _{AS}	Single Pulse Avalanche Energy (I _{L(pk)} = 35 A)		862	mJ
$T_{J_i} T_{STG}$	Operating and Storage Temperature		-55 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS in Reference to the NVMFS4C01N electrical data in SO-8FL (Note 1)

Symbol Parameter		Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case, Max	0.93	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient, Max (Note 2)	39	°C/W

^{1.} The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

^{2.} Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

^{3.} Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

 $\textbf{ELECTRICAL CHARACTERISTICS} \text{ in Reference to the NVMFS4C01N electrical data in SO-8FL (} \textbf{T}_{J} = 25^{\circ}\text{C} \text{ unless otherwise noted)} \textbf{A}_{J} = 25^{\circ}\text{C} \textbf{C}_{J} = 25^{\circ}\text{C}_{J} = 25^{\circ}\text{C}_{J}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS	•			-	•
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30	_	_	V
I _{DSS}	Drain to Source Leakage Current	V _{DS} = 24 V, V _{GS} = 0 V	-	_	1	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = 20 V, V _{DS} = 0 V	-	_	100	nA
ON CHARA	CTERISTICS (Note 4)					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.3		2.2	V
R _{DS(on)}	Drain to Source On-Resistance	V _{GS} = 10 V, I _D = 30 A	-	0.56	0.67	mΩ
		V _{GS} = 4.5 V, I _D = 30 A	-	0.76	0.95	mΩ
CHARGES	AND CAPACITANCES	•	•			_
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1 MHz	-	10144	_	pF
C _{oss}	Output Capacitance	t = 1 MHz	-	5073	_	pF
C _{rss}	Reverse Transfer Capacitance	7	-	148	_	pF
Q _{g(ToT)}	Total Gate Charge	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 30 A	-	63	_	nC
Q _{gs}	Gate to Source Gate Charge		-	29	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	13	-	nC
Q _{g(ToT)}	Total Gate Charge	V _{GS} = 10 V, V _{DS} = 15 V, I _D = 30 A		139		nC
WITCHING	CHARACTERISTICS (Note 5)					
t _{d(on)}	Turn-On Delay Time	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 15 A	-	29	_	ns
t _r	Rise Time	$R_G = 3.0 \Omega$	-	68	-	ns
t _{d(off)}	Turn-Off Delay Time		-	53	_	ns
t _f	Fall Time		-	36	_	ns
DRAIN-SOL	JRCE DIODE CHARACTERISTICS					
V _{SD}	Source to Drain Diode Voltage	I _S = 10 A, V _{GS} = 0 V	-	_	1.1	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V } dl_S/dt = 100 \text{ A}/\mu\text{A},$ $l_S = 30 \text{ A}$	-	87	-	ns
Q _{rr}	Reverse Recovery Charge	I _S = 30 A	-	147	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.

5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

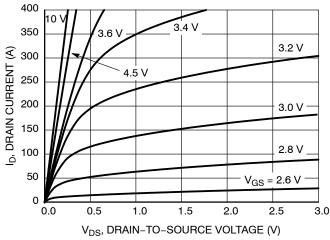


Figure 1. On-Region Characteristics

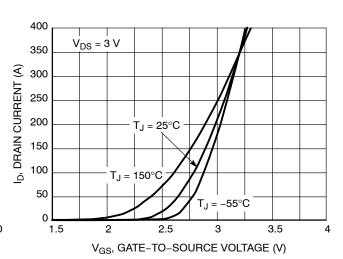


Figure 2. Transfer Characteristics

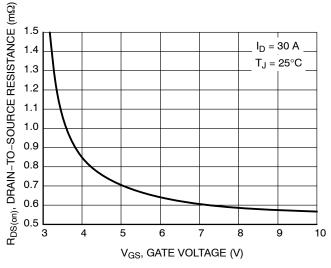


Figure 3. On-Resistance vs. Gate-to-Source Voltage

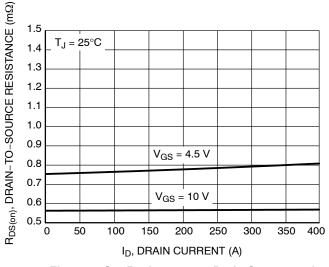


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

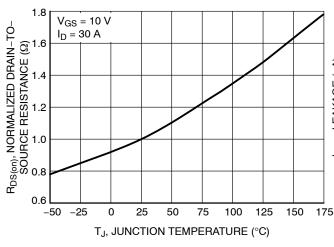


Figure 5. On–Resistance Variation with Temperature

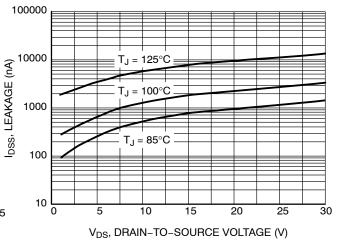


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

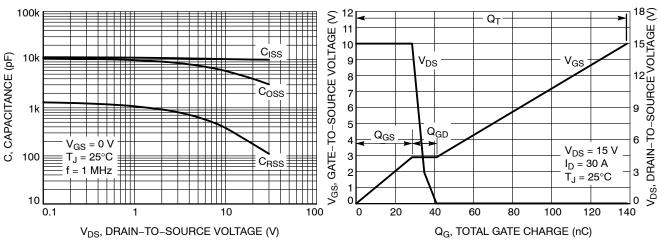


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

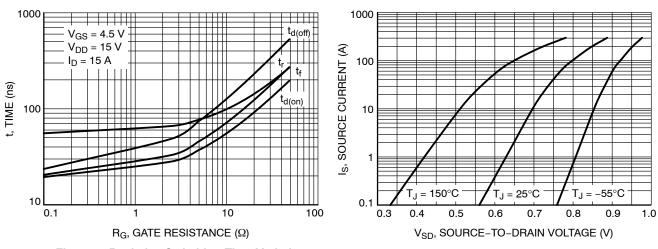


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

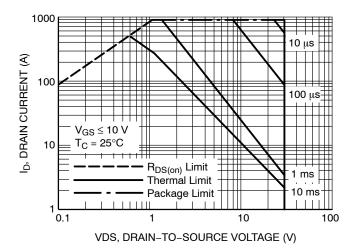


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

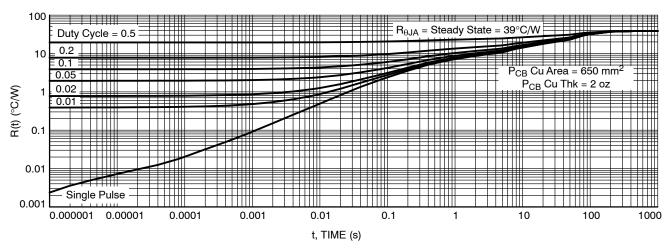


Figure 12. Thermal Impedance (Junction-to-Ambient)

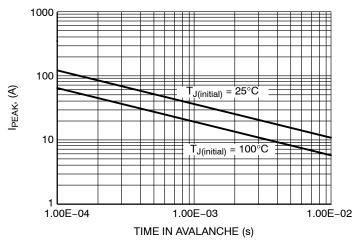


Figure 13. Avalanche Characteristics

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Sho

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative