

MOSFET – Power, N-Channel, SUPERFET[®] III, Easy Drive 650 V, 260 mΩ, 12 A

NVD260N65S3

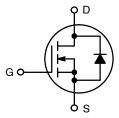
Features

- Ultra Low Gate Charge & Low Effective Output Capacitance
- Lower FOM (R_{DS(on) max.} x Q_{g typ.} & R_{DS(on) max.} x E_{OSS})
- 100% Avalanche Tested
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	650	٧
Gate-to-Source Voltage - DC	V _{GSS}	±30	٧
Gate-to-Source Voltage - AC (f > 1 Hz)	V _{GSS}	±30	٧
Drain Current – Continuous (T _C = 25°C)	I _D	12	Α
Drain Current – Continuous (T _C = 100°C)	I _D	7.6	Α
Drain Current - Pulsed (Note 3)	I _{DM}	30	Α
Power Dissipation (T _C = 25°C)	P_{D}	90	W
Power Dissipation - Derate Above 25°C	P_{D}	0.72	W/°C
Operating Junction and Storage Temperature Range	T_J , T_{STG}	-55 to +150	°C
Single Pulsed Avalanche Energy (Note 4)	E _{AS}	57	mJ
Repetitive Avalanche Energy (Note 3)	E _{AR}	0.9	mJ
MOSFET dv/dt	dv/dt	100	V/ns
Peak Diode Recovery dv/dt (Note 5)	dv/dt	20	V/ns
Max. Lead Temperature for Soldering Purposes (1/8" from case for 5 s)	TL	300	°C

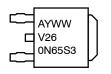
THERMAL CHARACTERISTICS


Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case, Max. (Notes 1, 2)	$R_{\theta JC}$	1.39	°C/W
Thermal Resistance, Junction-to-Ambient, Max. (Notes 1, 2, 6)	$R_{\theta JA}$	40	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- The entire application environment impacts the thermal resistance values shown.
 They are not constants and are only valid for the particular conditions noted.
- Assembled to an infinite heatsink with perfect heat transfer from the case (assumes 0 K/W thermal interface).
- 3. Repetitive rating: pulse-width limited by maximum junction temperature.
- 4. $I_{AS} = 2.3 \text{ A}$, $R_G = 25 \Omega$, starting $T_J = 25^{\circ}\text{C}$.
- 5. $I_{SD} \le 6$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \le 400$ V, starting $T_J = 25^{\circ}$ C.
- 6. Device on 1 in² pad 2 oz copper pad on 1.5 x 1.5 in. board of FR-4 material.

1


V _{DSS}	R _{DS(ON)} MAX	I _D MAX
650 V	260 m Ω @ 10 V	12 A

POWER MOSFET

MARKING DIAGRAM

A = Assembly Location

Y = Year WW = Work Week

V260N65S3 = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NVD260N65S3T4G	DPAK3 (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0 \text{ V, } I_D = 1 \text{ mA, } T_J = 25^{\circ}\text{C}$	650			V
Drain-to-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0 V, I _D = 1 mA, T _J = 150°C	700			V
Breakdown Voltage Temperature Coefficient	$\Delta BV_{DSS} / \Delta T_{J}$	I _D = 1 mA, Referenced to 25°C		660		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 650 V			1	μΑ
		V _{DS} = 520 V, T _C = 125°C		0.77		
Gate-to-Body Leakage Current	I _{GSS}	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}, I_D = 0.29 \text{ mA}$	2.5		4.5	V
Threshold Temperature Coefficient	$\Delta V_{GS(th)}/\Delta T_J$	$V_{GS} = V_{DS}, I_D = 0.29 \text{ mA}$		-8.9		mV/°C
Static Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 6 A		217	260	mΩ
Forward Transconductance	9FS	V _{DS} = 20 V, I _D = 6 A		7.3		S
DYNAMIC CHARACTERISTICS	<u>'</u>		•	1	I	
Input Capacitance	C _{iss}			1042		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, V _{DS} = 400 V, f = 1 MHz		22.5		- -
Reverse Transfer Capacitance	C _{rss}			3.8		
Effective Output Capacitance	C _{oss(eff.)}	V _{DS} = 0 V to 400 V, V _{GS} = 0 V		225		pF
Energy Related Output Capacitance	C _{oss(er.)}	V _{DS} = 0 V to 400 V, V _{GS} = 0 V		37.5		pF
Total Gate Charge at 10 V	Q _{G(TOT)}			23.5		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 400 V, I _D = 6 A		3.8		1
Gate-to-Source Gate Charge	Q _{GS}	(Note 7)		6.3		-
Gate-to-Drain "Miller" Charge	Q_{GD}			9.8		1
Equivalent Series Resistance	ESR	f = 1 MHz		8.1		Ω
SWITCHING CHARACTERISTICS			1	1		
Turn-On Delay Time	t _{d(on)}			17.2		ns
Turn-On Rise Time	t _r	V_{GS} = 10 V, V_{DD} = 400 V, I_D = 6 A, R_g = 4.7 Ω		13.9		ns
Turn-Off Delay Time	t _{d(off)}	$I_D = 6 \text{ A}, R_g = 4.7 \Omega$ (Note 7)		48.3		ns
Turn-Off Fall Time	t _f	, ,		8.3		ns
SOURCE-DRAIN DIODE CHARACTER			<u> </u>	<u> </u>	l	
Maximum Continuous Source-to- Drain Diode Forward Current	Is	V _{GS} = 0 V			12	А
Maximum Pulsed Source-to-Drain Diode Forward Current	I _{SM}	V _{GS} = 0 V			30	А
Source-to-Drain Diode Forward Voltage	V _{SD}	V _{GS} = 0 V, I _{SD} = 6 A			1.2	V
Reverse Recovery Time	t _{rr}			232		ns
Charge Time	t _a	$V_{GS} = 0 \text{ V}, dI_F/dt = 100 \text{ A}/\mu\text{s},$		220		1
Discharge Time	t _b	$V_{GS} = 0 \text{ V, dif/di} = 100 \text{ A/}\mu\text{s,}$ $I_{SD} = 6 \text{ A}$		13		1
Reverse Recovery Charge	Q _{rr}			2837		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

7. Essentially independent of operating temperature typical characteristics.

TYPICAL CHARACTERISTICS

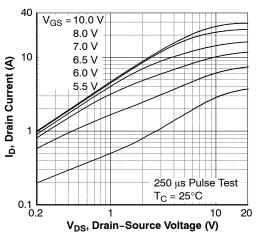


Figure 1. On-Region Characteristics 25°C

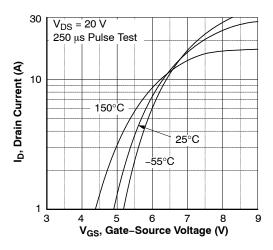


Figure 3. Transfer Characteristics

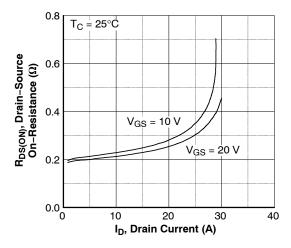


Figure 5. On-Resistance Variation vs. Drain Current and Gate Voltage

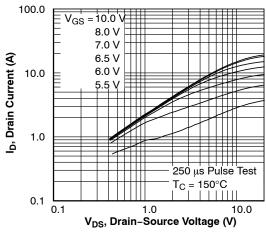


Figure 2. On-Region Characteristics 150°C

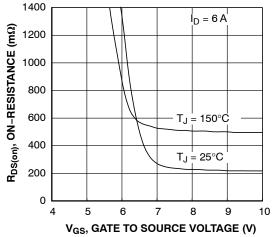


Figure 4. R_{DS(on)} vs. Gate Voltage

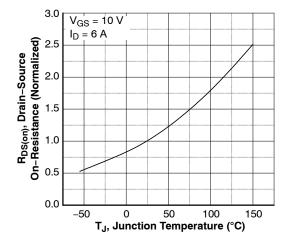


Figure 6. On–Resistance Variation vs. Temperature

TYPICAL CHARACTERISTICS

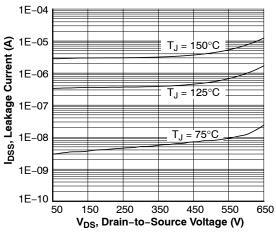


Figure 7. Drain-to-Source Leakage Current vs. Voltage

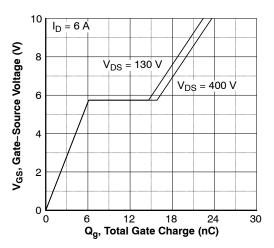


Figure 9. Gate Charge Characteristics

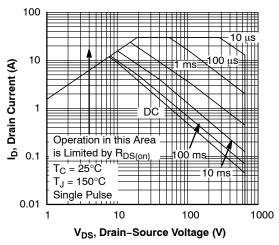


Figure 11. Maximum Safe Operating Area

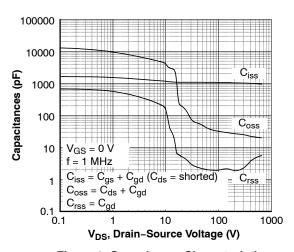


Figure 8. Capacitance Characteristics

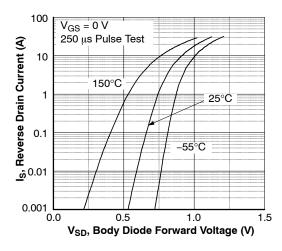


Figure 10. Body Diode Forward Voltage Variation vs. Source Current and Temperature

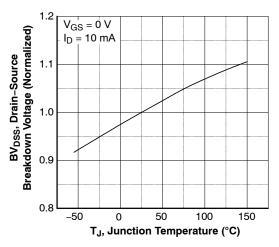


Figure 12. Breakdown Voltage Variation vs. Temperature

TYPICAL CHARACTERISTICS

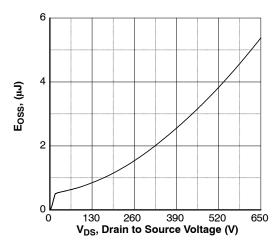


Figure 13. E_{OSS} vs. Drain to Source Voltage

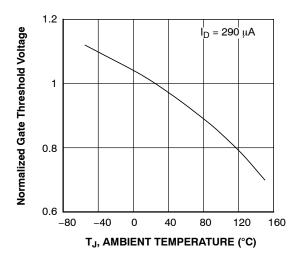


Figure 14. Normalized Gate Threshold Voltage vs. Temperature

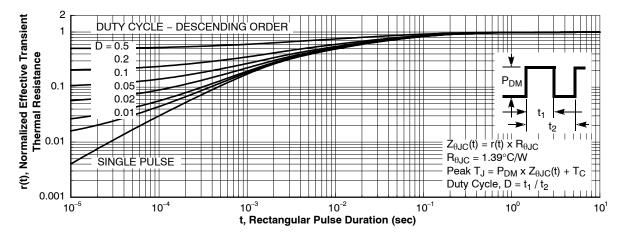


Figure 15. Transient Thermal Response Curve

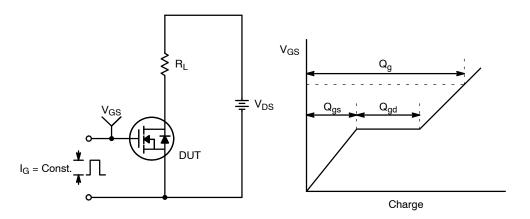


Figure 16. Gate Charge Test Circuit & Waveform

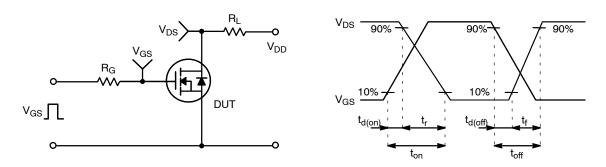


Figure 17. Resistive Switching Test Circuit & Waveforms

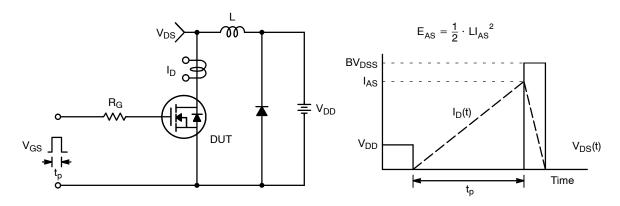


Figure 18. Unclamped Inductive Switching Test Circuit & Waveforms

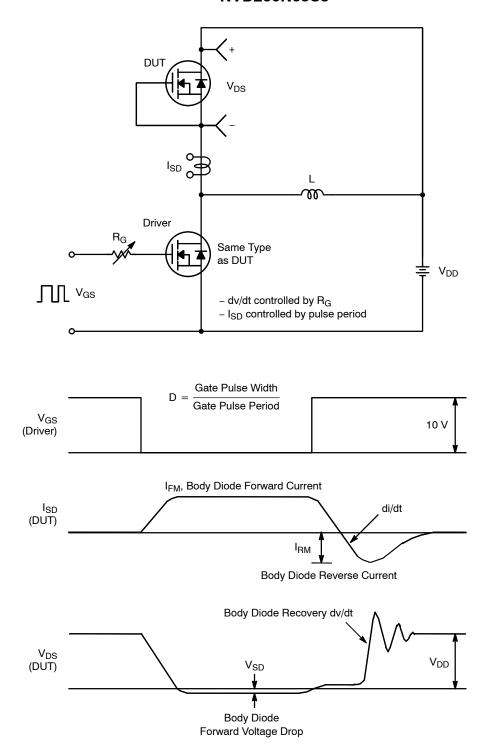
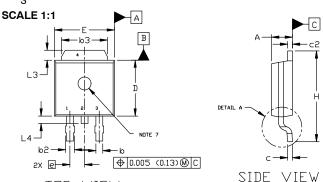


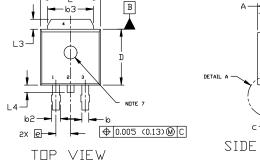
Figure 19. Peak Diode Recovery dv/dt Test Circuit & Waveforms

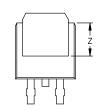

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DPAK (SINGLE GAUGE)

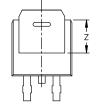
CASE 369C ISSUE G

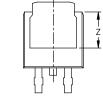
DATE 31 MAY 2023

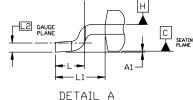



- DIMENSIONING AND TOLERANCING ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS 63,
- L3. AND Z. L3, AND Z.

 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR
 GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 DIMENSIONS D AND E ARE DETERMINED AT THE
 OUTERMOST EXTREMES OF THE PLASTIC BODY.
 DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
 DETININAL MOLD ESCALUES.


- OPTIONAL MOLD FEATURE.


DIM	INCHES		MILLIM	ETERS
ויונע	MIN.	MAX.	MIN.	MAX.
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
C	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090 BSC		2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90 REF	
L2	0.020	BSC	0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	



BOTTOM VIEW

BOTTOM VIEW ALTERNATE CONSTRUCTIONS

5.80 [0.228] 6.20 [0.244] 2.58 3.00 [0.102] [0.118] 1.60 [0.063] 6.17 [0.243]

CW ROTATED 90°

GENERIC MARKING DIAGRAM*

XXXXXX	= Device Code
Α	= Assembly Location
L	= Wafer Lot
Υ	= Year
WW	= Work Week
G	= Pb-Free Package

RECOMMENDED MOUNTING FOOTPRINT* *FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DUWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
2. DRAIN	2. CATHODE	2. ANODE	2. ANODE
3. SOURCE	3. ANODE	3. GATE	3. CATHODE
4. DRAIN	4. CATHODE	4. ANODE	4. ANODE

STYLE 7: PIN 1. GATE 2. COLLECTOR STYLE 6: STYLE 8: STYLE 9: STYLE 10: PIN 1. CATHODE 2. ANODE 3. CATHODE PIN 1. MT1 2. MT2 PIN 1. N/C 2. CATHODE 3. ANODE PIN 1. ANODE 2. CATHODE 3 FMITTER 3 RESISTOR ADJUST 3 GATE 4. COLLECTOR 4. CATHODE 4. ANODE 4. CATHODE

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales