MOSFET – Power, Single, P-Channel -60 V, -61 A, 16 m Ω # NVD5117PL #### **Features** - Low R_{DS(on)} to Minimize Conduction Losses - High Current Capability - Avalanche Energy Specified - AEC-Q101 Qualified - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant #### MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) | Symbol | Param | Value | Unit | | | |-----------------------------------|--|----------------------|---------------------------|---------------|----| | V_{DSS} | Drain-to-Source Voltage | | | -60 | V | | V _{GS} | Gate-to-Source Voltage | | | ±20 | V | | I _D | Continuous Drain | | T _C = 25°C | -61 | Α | | | Current R _{θJC} (Note 1) | Steady | T _C = 100°C | -43 | | | P_{D} | Power Dissipation $R_{\theta JC}$ | State | T _C = 25°C | 118 | W | | | (Note 1) | | T _C = 100°C | 59 | | | I _D | Continuous Drain
Current R _{0.IA} (Notes 1 | | T _A = 25°C | -11 | Α | | | & 2) | Steady | T _A = 100°C | -8 | | | P_{D} | Power Dissipation $R_{\theta JA}$ | State | T _A = 25°C | 4.1 | W | | | (Notes 1 & 2) | | T _A = 100°C | 2.1 | | | I _{DM} | Pulsed Drain Current | T _A = 25° | C, t _p = 10 μs | -419 | Α | | I _{Dmaxpkg} | Current Limited by $T_A = 25^{\circ}C$ Package (Note 3) | | | 60 | Α | | T _J , T _{stg} | Operating Junction and Storage Temperature | | | -55 to
175 | °C | | IS | Source Current (Body Diode) | | | -118 | Α | | E _{AS} | Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{DD} = 50 V, V _{GS} = 10 V, $I_{L(pk)}$ = 40 A, L = 0.3 mH, R _G = 25 Ω) | | | 240 | mJ | | TL | Lead Temperature for Soldering Purposes (1/8" from case for 10 s) | | | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL RESISTANCE MAXIMUM RATINGS | Symbol | Parameter | Value | Unit | |-----------------|---|-------|------| | $R_{ heta JC}$ | Junction-to-Case - Steady State (Drain) | 1.3 | °C/W | | $R_{\theta JA}$ | Junction-to-Ambient - Steady State (Note 2) | 37 | | - The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. - 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad. - Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle. | V _{(BR)DSS} R _{DS(on)} | | I _D | |--|----------------|----------------| | -60 V | 16 mΩ @ –10 V | -61 A | | _00 v | 22 mΩ @ -4.5 V | -01 A | #### MARKING DIAGRAMS & PIN ASSIGNMENT A = Assembly Location* / = Year WW = Work Week 5117L = Device Code G = Pb-Free Package * The Assembly Location Code (A) is front side optional. In cases where the Assembly Location is stamped in the package bottom (molding ejecter pin), the front side assembly code may be blank. #### **ORDERING INFORMATION** See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet. NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 5. ## **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise noted) | Symbol | Parameter | Test Condition | | Min | Тур | Max | Unit | |----------------------|-----------------------------------|--|--------------------------|------|-------|------|------| | OFF CHARA | CTERISTICS | | • | | • | • | • | | V _{(BR)DSS} | Drain-to-Source Breakdown Voltage | $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$ | | -60 | | | V | | I _{DSS} | Zero Gate Voltage Drain Current | $V_{GS} = 0 \text{ V}.$ $T_{J} = 25^{\circ}\text{C}$ | | | | -1.0 | μΑ | | | | $V_{GS} = 0 \text{ V}, \\ V_{DS} = -60 \text{ V}$ | T _J = 125°C | | | -100 | 1 | | I _{GSS} | Gate-to-Source Leakage Current | $V_{DS} = 0 \text{ V}, V_{GS}$ | s = ±20 V | | | ±100 | nA | | ON CHARAC | CTERISTICS (Note 4) | | | | | | | | V _{GS(TH)} | Gate Threshold Voltage | $V_{GS} = V_{DS}, I_D$ | = -250 μΑ | -1.5 | | -2.5 | V | | R _{DS(on)} | Drain-to-Source On Resistance | V _{GS} = -10 V, I | _D = -29 A | | 12 | 16 | mΩ | | | | $V_{GS} = -4.5 \text{ V}, 1$ | _D = -29 A | | 16 | 22 | 1 | | 9FS | Froward Transconductance | V _{DS} = -15 V, I | _D = -15 A | | 30 | | S | | CHARGES A | IND CAPACITANCES | | | | | | | | C _{iss} | Input Capacitance | $V_{GS} = 0 \text{ V, } f = 1.0 \text{ MHz,}$
$V_{DS} = -25 \text{ V}$ | | | 4800 | | pF | | C _{oss} | Output Capacitance | | | | 480 | | 1 | | C _{rss} | Reverse Transfer Capacitance | | | | 320 | | 1 | | Q _{G(TOT)} | Total Gate Charge | $V_{DS} = -48 \text{ V},$ $I_{D} = -29 \text{ A}$ $V_{GS} = -4.5 \text{ V}$ $V_{GS} = -10 \text{ V}$ | V _{GS} = -4.5 V | | 49 | | nC | | | | | V _{GS} = -10 V | | 85 | | 1 | | Q _{G(TH)} | Threshold Gate Charge | $V_{GS} = -4.5 \text{ V}, V_{DS} = -48 \text{ V},$ $I_{D} = -29 \text{ A}$ | | | 3 | | 1 | | Q _{GS} | Gate-to-Source Charge | | | | 13 | | 1 | | Q_{GD} | Gate-to-Drain Charge | | | | 28 | | 1 | | V_{GP} | Plateau Voltage | | • | | 3.2 | | V | | SWITCHING | CHARACTERISTICS (Notes 4) | | | | | • | | | t _{d(on)} | Turn-On Delay Time | | | | 22 | | ns | | t _r | Rise Time | $V_{GS} = -4.5 \text{ V}, V_{I}$ | ns = -48 V. | | 195 | | 1 | | t _{d(off)} | Turn-Off Delay Time | $I_D = -29 A, R_0$ | $G = 2.5 \Omega$ | | 50 | | 1 | | t _f | Fall Time | | | | 132 | | 1 | | DRAIN-SOU | RCE DIODE CHARACTERISTICS | | | | | | | | V _{SD} | Forward Diode Voltage | V _{GS} = 0 V, | T _J = 25°C | | -0.86 | -1.0 | V | | | | $I_{S} = -29 \text{ A}$ | T _J = 125°C | | -0.74 | | 1 | | t _{RR} | Reverse Recovery Time | | <u>'</u> | | 36 | | ns | | t _a | Charge Time | $V_{GS} = 0 \text{ V}, dl_s/dt$ | = 100 A/us. | | 19 | | 1 | | t _b | Discharge Time | $l_s = -29$ | 9Α | | 17 | | 1 | | Q _{RR} | Reverse Recovery Charge | | | | 44 | | nC | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%. #### **TYPICAL CHARACTERISTICS** #### TYPICAL CHARACTERISTICS (continued) Figure 7. Capacitance Variation Figure 8. Gate-to-Source vs. Total Charge Figure 9. Resistive Switching Time Variation vs. Gate Resistance Figure 10. Diode Forward Voltage vs. Current Figure 11. Maximum Rated Forward Biased **Safe Operating Area** Figure 12. Maximum Avalanche Energy vs. **Starting Junction Temperature** ### TYPICAL CHARACTERISTICS (continued) Figure 13. Thermal Response #### **DEVICE ORDERING INFORMATION** | Device | Package | Shipping [†] | |-------------------|-------------------|-----------------------| | NVD5117PLT4G-VF01 | DPAK
(Pb-Free) | 2500 / Tape & Reel | #### **DISCONTINUED** (Note 5) | NVD5117PLT4G | DPAK | 2500 / Tape & Reel | |--------------|-----------|--------------------| | | (Pb-Free) | · | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{5.} **DISCONTINUED:** This device is not recommended for new design. Please contact your **onsemi** representative for information. The most current information on this device may be available on www.onsemi.com. # **DPAK (SINGLE GAUGE)** CASE 369C **ISSUE G** **DATE 31 MAY 2023** - DIMENSIONING AND TOLERANCING ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES - THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS 63, - L3. AND Z. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE. - DIMENSIONS D AND E ARE DETERMINED AT THE DUTERMOST EXTREMES OF THE PLASTIC BODY. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H. - OPTIONAL MOLD FEATURE. | DIM | INC | HES | MILLIMETERS | | | |-----|-----------|-------|-------------|-------|--| | MIM | MIN. | MAX. | MIN. | MAX. | | | Α | 0.086 | 0.094 | 2.18 | 2.38 | | | A1 | 0.000 | 0.005 | 0.00 | 0.13 | | | ھ | 0.025 | 0.035 | 0.63 | 0.89 | | | b2 | 0.028 | 0.045 | 0.72 | 1.14 | | | b3 | 0.180 | 0.215 | 4.57 | 5.46 | | | Ū | 0.018 | 0.024 | 0.46 | 0.61 | | | -2 | 0.018 | 0.024 | 0.46 | 0.61 | | | D | 0.235 | 0.245 | 5.97 | 6.22 | | | E | 0.250 | 0.265 | 6.35 | 6.73 | | | е | 0.090 BSC | | 2.29 | BSC | | | Η | 0.370 | 0.410 | 9.40 | 10.41 | | | L | 0.055 | 0.070 | 1.40 | 1.78 | | | L1 | 0.114 REF | | 2.90 REF | | | | L2 | 0.020 | BSC | 0.51 | BSC | | | L3 | 0.035 | 0.050 | 0.89 | 1.27 | | | L4 | | 0.040 | - | 1.01 | | | Z | 0.155 | | 3.93 | | | BOTTOM VIEW BOTTOM VIEW ALTERNATE CONSTRUCTIONS CW ROTATED 90° #### **GENERIC MARKING DIAGRAM*** | XXXXXX | = Device Code | |--------|---------------------| | Α | = Assembly Location | | L | = Wafer Lot | | Υ | = Year | | WW | = Work Week | | G | = Pb-Free Package | RECOMMENDED MOUNTING FOOTPRINT* *FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DUWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D. S | STYLE 1: | STYLE 2: | STYLE 3: | STYLE 4: | STYLE 5: | |-----------------------------|--------------------------|---------------------------|-------------------------|---------------------------| | PIN 1. BASE | PIN 1. GATE | PIN 1. ANODE | PIN 1. CATHODE | PIN 1. GATE | | COLLECTOR | DRAIN | CATHODE | 2. ANODE | ANODE | | EMITTER | SOURCE | ANODE | 3. GATE | CATHODE | | COLLECTOR | 4. DRAIN | CATHODE | ANODE | ANODE | STYLE 7: PIN 1. GATE 2. COLLECTOR STYLE 6: STYLE 8: STYLE 9: STYLE 10: PIN 1. CATHODE 2. ANODE 3. CATHODE PIN 1. MT1 2. MT2 PIN 1. N/C 2. CATHODE 3. ANODE PIN 1. ANODE 2. CATHODE 3 FMITTER 3 RESISTOR ADJUST 3 GATE 4. COLLECTOR 4. CATHODE 4. ANODE 4. CATHODE *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98AON10527D | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|---------------------|--|-------------|--| | DESCRIPTION: | DPAK (SINGLE GAUGE) | | PAGE 1 OF 1 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales