

# MOSFET - Power, N-Channel With ESD Protection 60 V, 853 mA

# NVNJWS1K6N061L

#### **Features**

- Low R<sub>DS(on)</sub> and Low Gate Threshold
- Low Input Capacitance
- ESD Protected Gate
- Wettable Flank for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- This is a Pb-Free Device

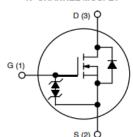
### **Applications**

- Low Side Load Switch
- DC-DC Converters (Buck and Boost Circuits)

#### MAXIMUM RATINGS (T<sub>J</sub> = 25°C unless otherwise stated)

| Parame                                                            | Symbol                       | Value                  | Unit                              |               |    |
|-------------------------------------------------------------------|------------------------------|------------------------|-----------------------------------|---------------|----|
| Drain-to-Source Voltage                                           |                              |                        | $V_{DSS}$                         | 60            | V  |
| Gate-to-Source Voltage                                            |                              |                        | $V_{GS}$                          | ±20           | V  |
| Continuous Drain                                                  | Steady T <sub>C</sub> = 25°C |                        | I <sub>D</sub>                    | 853           | mA |
| Current R <sub>θJC</sub> (Note 1)                                 | State                        | T <sub>C</sub> = 100°C |                                   | 603           |    |
| Power Dissipation R <sub>0</sub> JC                               | Steady                       | T <sub>C</sub> = 25°C  | $P_{D}$                           | 2617          | mW |
| (Note 1)                                                          | State                        | T <sub>C</sub> = 100°C |                                   | 1309          |    |
| Continuous Drain                                                  | Steady                       | T <sub>A</sub> = 25°C  | I <sub>D</sub>                    | 632           | mA |
| Current R <sub>θJA</sub> (Note 1)                                 | State                        | T <sub>A</sub> = 100°C |                                   | 447           |    |
| Power Dissipation R <sub>θJA</sub>                                | Steady                       | T <sub>A</sub> = 25°C  | $P_{D}$                           | 1437          | mW |
| (Note 1)                                                          | State                        | T <sub>A</sub> = 100°C |                                   | 718           |    |
| Pulsed Drain Current                                              | t <sub>p</sub> =             | = 10 μs                | I <sub>DM</sub>                   | 6.47          | Α  |
| Operating Junction and Storage Temperature                        |                              |                        | T <sub>J</sub> , T <sub>STG</sub> | –55 to<br>175 | ç  |
| Source Current (Body Diode)                                       |                              |                        | Is                                | 2.181         | Α  |
| Lead Temperature for Soldering Purposes (1/8" from case for 10 s) |                              |                        | TL                                | 260           | °C |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


#### THERMAL RESISTANCE RATINGS

| Parameter                          | Symbol          | Value | Unit |
|------------------------------------|-----------------|-------|------|
| Junction-to-Ambient - Steady State | $R_{\theta JA}$ | 104   | °C/W |
| Junction-to-Case - Steady State    | $R_{	heta JC}$  | 57.31 |      |

1

| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> MAX | I <sub>D</sub> Max |
|----------------------|-------------------------|--------------------|
| 60 V                 | 1.6 Ω @ 10 V            | 853 mA             |
| 60 V                 | 2.5 Ω @ 4.5 V           | 655 IIIA           |

#### N-CHANNEL MOSFET







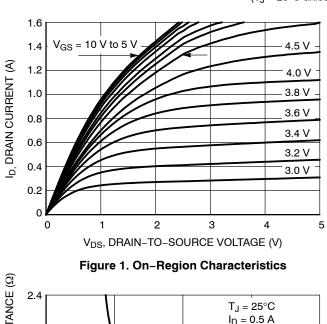
6NM •

6N = Specific Device Code M = Month Code

#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 5 of this data sheet.

<sup>1.</sup> Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).


# **ELECTRICAL CHARACTERISTICS** ( $T_J = 25^{\circ}C$ unless otherwise stated)

| Parameter                                                    | Symbol                               | Test Condition                                                              |                        | Min | Тур  | Max | Unit  |
|--------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------|------------------------|-----|------|-----|-------|
| OFF CHARACTERISTICS                                          |                                      |                                                                             | •                      |     |      |     |       |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                 | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$                               |                        | 60  |      |     | V     |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /T <sub>J</sub> | I <sub>D</sub> = 250 μA, ref to 25°C                                        |                        |     | 87   |     | mV/°C |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub> V <sub>C</sub>      | $V_{GS} = 0 V$                                                              | T <sub>J</sub> = 25°C  |     |      | 1.0 | μΑ    |
|                                                              |                                      | $V_{DS} = 60 \text{ V}$                                                     | T <sub>J</sub> = 125°C |     |      | 500 | 7     |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                     | V <sub>DS</sub> = 0 V, V <sub>GS</sub> = ±20 V                              |                        |     |      | ±10 | μΑ    |
| ON CHARACTERISTICS (Note 2)                                  |                                      |                                                                             | •                      |     |      |     |       |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                  | $V_{GS} = V_{DS}, I_D = 250 \mu A$                                          |                        | 1.0 |      | 2.5 | V     |
| Negative Threshold Temperature<br>Coefficient                | V <sub>GS(TH)</sub> /T <sub>J</sub>  |                                                                             |                        |     | -4.3 |     | mV/°C |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                  | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 500 mA                             |                        |     | 1.2  | 1.6 | Ω     |
|                                                              |                                      | V <sub>GS</sub> = 4.5 V, I <sub>D</sub> = 200 mA                            |                        |     | 1.5  | 2.5 |       |
| Forward Transconductance                                     | 9FS                                  | $V_{DS} = 5 \text{ V}, I_D = 200 \text{ mA}$                                |                        |     | 0.48 |     | S     |
| CHARGES AND CAPACITANCES                                     |                                      |                                                                             |                        |     |      |     |       |
| Input Capacitance                                            | C <sub>ISS</sub>                     |                                                                             |                        |     | 26   |     | pF    |
| Output Capacitance                                           | C <sub>OSS</sub>                     | $V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,} $ $V_{DS} = 20 \text{ V}$       |                        |     | 4.4  |     |       |
| Reverse Transfer Capacitance                                 | C <sub>RSS</sub>                     |                                                                             |                        |     | 2.5  |     |       |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                  | V <sub>GS</sub> = 4.5 V, V <sub>DS</sub> = 25 V,<br>I <sub>D</sub> = 200 mA |                        |     | 0.9  |     | nC    |
| Threshold Gate Charge                                        | Q <sub>G(TH)</sub>                   |                                                                             |                        |     | 0.2  |     |       |
| Gate-to-Source Charge                                        | $Q_{GS}$                             |                                                                             |                        |     | 0.3  |     |       |
| Gate-to-Drain Charge                                         | $Q_{GD}$                             |                                                                             |                        |     | 0.28 |     |       |
| SWITCHING CHARACTERISTICS (No                                | ote 3)                               |                                                                             |                        |     |      |     |       |
| Turn-On Delay Time                                           | t <sub>d(on)</sub>                   |                                                                             |                        |     | 22   |     | ns    |
| Rise Time                                                    | t <sub>r</sub>                       | $V_{GS}$ = 4.5 V, $V_{DD}$ = 25 V, $I_D$ = 200 mA, $R_G$ = 25 $\Omega$      |                        |     | 34   |     | ヿ     |
| Turn-Off Delay Time                                          | t <sub>d(off)</sub>                  |                                                                             |                        |     | 34   |     |       |
| Fall Time                                                    | t <sub>f</sub>                       |                                                                             |                        |     | 32   |     |       |
| DRAIN-SOURCE DIODE CHARACTE                                  | RISTICS                              |                                                                             | •                      |     | -    |     | •     |
| Forward Diode Voltage                                        | V <sub>SD</sub>                      | V <sub>GS</sub> = 0 V,                                                      | T <sub>J</sub> = 25°C  |     | 0.8  | 1.2 | V     |
|                                                              |                                      | I <sub>S</sub> = 200 mA                                                     | T <sub>J</sub> = 125°C |     | 0.64 |     | 1     |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: pulse width  $\leq 300~\mu s$ , duty cycle  $\leq 2\%$ . 3. Switching characteristics are independent of operating junction temperatures.

#### **TYPICAL PERFORMANCE CURVES**

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$ 



2.0  $V_{DS} = 10 \text{ V}$  $T_{J} = 25^{\circ}\text{C}$   $T_{J} = -55^{\circ}\text{C}$   $V_{GS}$ , GATE-TO-SOURCE VOLTAGE (V)

CC SUBJUNITION OF THE STATE OF

Figure 2. Transfer Characteristics

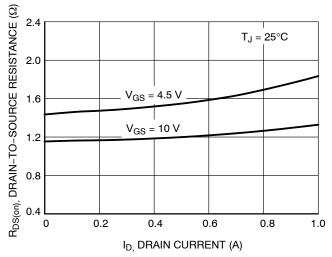



Figure 3. On-Resistance vs. Gate-to-Source Voltage

V<sub>GS</sub>, GATE-TO-SOURCE VOLTAGE (V)

2.5 V<sub>GS</sub> = 10 V I<sub>D</sub> = 0.5 A V<sub>GS</sub> = 10 V<sub></sub>

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

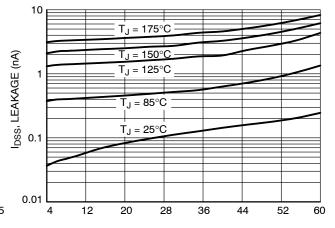



Figure 5. On-Resistance Variation with Temperature

V<sub>DS</sub>, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 6. Drain-to-Source Leakage Current vs. Voltage

#### **TYPICAL PERFORMANCE CURVES**

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$ 

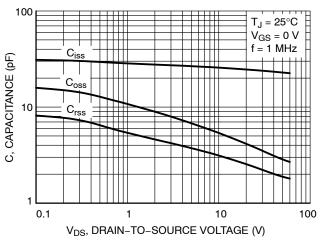
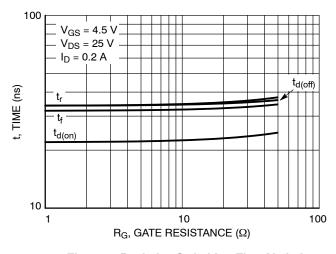




Figure 7. Capacitance Variation

Figure 8. Gate-to-Source vs. Total Charge



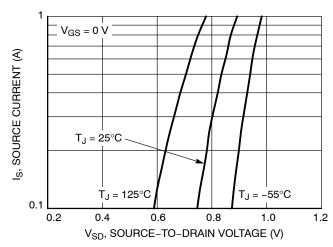



Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

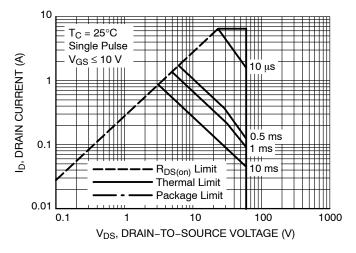



Figure 11. Maximum Rated Forward Biased Safe Operating Area

#### **TYPICAL PERFORMANCE CURVES**

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$ 

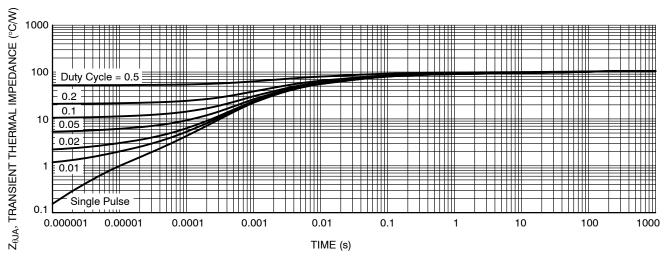
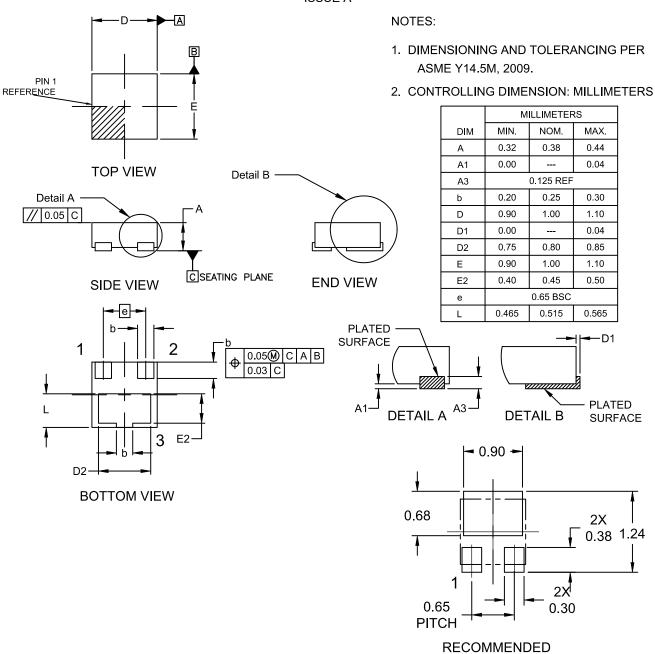



Figure 12. Junction-to-Case Transient Thermal Response


**Table 1. ORDERING INFORMATION** 

| Part Number       | Marking | Package             | Shipping <sup>†</sup> |
|-------------------|---------|---------------------|-----------------------|
| NVNJWS1K6N061LTAG | 6N      | XDFNW3<br>(Pb-Free) | 3000 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

#### **PACKAGE DIMENSIONS**

#### XDFNW3 1x1, 0.65P CASE 521AC ISSUE A



MOUNTING FOOTPRINT\*

For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative