TRF3703-17 Quadrature Modulator Evaluation Module The TRF370317 is a low-noise, direct quadrature modulator, capable of converting complex modulated signals from baseband or IF directly up to RF. The TRF370317 is a high-performance, superior-linearity device that is ideal for RF frequencies of 400 MHz through 4 GHz. For optimum linearity performance, the device is operated at a 1.7-V common-mode voltage. This document outlines the basic procedure for connecting the EVM to test equipment for basic testing. It also illustrates the measurement parameters related to intercept point, sideband suppression, and carrier rejection that are common to modulator devices. #### Contents | | | ********** | | |---|-----------------------------------|-----------------------------------|---| | 1 | Overview | | 2 | | | 1.1 | Purpose | 2 | | | 1.2 | EVM Circuit Overview | 2 | | | 1.3 | Power Requirements | 2 | | | 1.4 | TRF3703-17EVM Operating Procedure | | | | | List of Figures | | | 1 | Un-Optimized Sideband Suppression | | 2 | | 2 | Optimized Sideband Suppression | | | | 3 | GSM EDGE EVM at 1800 MHz | | | Overview www.ti.com #### 1 Overview This document relates to the TRF370317 direct quadrature modulator for applications in the transmit path of base stations and communications equipment. The TRF370317 operates between 400 MHz and 4 GHz. The quadrature modulator is used for upconversion of signals from the transmit chain DAC to the RF power amplifier device. Evaluating modulator complex performance involves careful bias-voltage setup, an LO signal, and two differential (I/Q) signals at the input of the modulator. This document describes the wide range of test options available and the factors that must be considered in using this EVM. # 1.1 Purpose The TRF370317-17 evaluation module (EVM) is intended for the evaluation of the TRF370317 direct-launch quadrature modulators. ### 1.2 EVM Circuit Overview The I signals are connected to J4 (I+) and J3 (I–). The Q signals are connected to J5 (Q–) and J6 (Q+). The LO signal is fed to SMA connector J1, whereas J2 must be terminated with 50 Ω to ground. SMA connector J7 is used to monitor the RF output signal from the quadrature modulator (U1). The quadrature modulator requires a supply voltage of 4.5 V to 5.5 V from a regulated power supply through headers W1 and W2. The TRF370317 quadrature modulators require a dc common-mode bias voltage of 1.7 V on all four input pins. # 1.3 Power Requirements The TRF3703-17EVM requires two 5-V V_{CC} dc power-supply connectors through headers W1 and W2. Header W1 supplies 5 V to the LO circuitry, and W2 supplies 5 V to the modulator circuitry. # **CAUTION** Voltage Limits Exceeding 5.6 V may damage the TRF3703. www.ti.com Overview # 1.4 TRF3703-17EVM Operating Procedure Set up the EVM as follows: - 1. Power-supply connection: - a. Switch on the V_{CC} (5-V) supply and set the current limit set to 245 mA. - b. Connect the 5-V supply to headers W1 and W2. - c. Verify that the current drawn is approximately 210 mA. - 2. Use a suitable 50- Ω output signal generator or the TRF370317 to supply the LO signal at the desired frequency to J1, and terminate J2 with 50 Ω to ground. - 3. Use a DAC or an arbitrary waveform generator to provide the I/Q input signals. A typical setup is as follows: a 1-Vp-p sine wave, a frequency of 50 KHz, a dc-offset of 0 V, and an output impedance of 50 Ω (typically an ESG vector signal generator or similar). - 4. Set the common mode on the ESG to 0.85 V, corresponding to 1.7 V at the device. - 5. Connect a spectrum analyzer to the SMA connector marked RFOUT (J7) and monitor the TRF3703-17 output. # 1.4.1 Typical Test Results # 1.4.1.1 Un-Optimized Sideband Suppression Un-optimized sideband suppression measures the amount by which the unwanted sideband of the input signal is attenuated in the output of the modulator, relative to the wanted sideband. This assumes that the baseband inputs delivered to the modulator input pins are perfectly matched in amplitude and are exactly 90° out of phase. Un-optimized sideband suppression is measured in dBc. An iterative test is required in order to match perfectly the inputs to the modulator. This ensures that any equipment, board, or signal conditioning component imbalances are corrected before the signals are applied to the device under test. Once the baseband inputs to the modulator are balanced, the amount of suppression attained is a measure of the internal mismatches of the modulator, inherent to any modulator design. This suppression is the one specified in the TRF370317 data sheet. See Figure 1. Overview www.ti.com Figure 1. Un-Optimized Sideband Suppression 1.4.1.2 Optimized Sideband Suppression There are two ways to change the sideband suppression of the TRF370317. One is the amplitude between the four inputs, and the second is the phase of the four inputs. The ideal condition is when all four inputs (I, \overline{I} , Q, and \overline{Q}) have exactly the same amplitude and the phase relationship is: I = 0°, \overline{I} = 180°, Q = 90°, and \overline{Q} = 270°. Also, the optimization of the sideband is controlled by the amplitude and phase of the I and Q signals, which are controlled with the gain settings of the DAC. This is an iterative procedure that results in optimized suppression levels that exceeds 60 dBc. The level of suppression observed depends on the amount of resolution available from the DAC driving the modulator. By using TI's DAC568X, the user can take advantage of built-in features (DAC fine gain) to optimize the sideband suppression by changing the amplitude relationship of the signals. If another DAC is used, then the user must provide this level of adjustment by controlling the regular digital inputs to the DAC. See Figure 2. www.ti.com Overview Figure 2. Optimized Sideband Suppression # 1.4.1.3 Carrier Feedthrough Carrier feedthrough is the amount of the LO that leaks onto the output spectrum of the modulator. Ideally for the TRF370317, inputs (I, \overline{I} , Q, and \overline{Q}) must be at approximately 1.7 V for TRF370317. The DAC dc settings are also useful to correct the dc mismatch between I and \overline{I} and between Q and \overline{Q} to correct for the LO feedthrough. If using Tl's DAC568X, then the internal controls for the IQ offsets provide excellent carrier suppression (very low LO leakage). Alternatively, if an ESG is being used, adjust the I and Q voltage offsets in mV steps until you obtain the minimum carrier feedthrough. A typical carrier feedthrough value is below -50 dBm. See Figure 2. #### 1.4.1.4 GSM (EDGE EVM Measurements) - 1. Provide a GSM edge signal of the desired frequency into the differential baseband inputs (example sample rate = 4.33 MHz). - 2. Use a spectrum analyzer with edge personality to measure the transmit power to either 0 or –5 dBm. - 3. PSA: Mode \rightarrow GSM(w/ EDGE) \rightarrow measure \rightarrow Transmit Pwr(usually 0 or -5 dBm) \rightarrow more \rightarrow EDGE EVM. - 4. ESG: Mode setup → select waveform → highlight EDGE → select waveform → ARB setup → type 4.33333 MHz → I/Q → I/Q output control → Common mode I/Q offset → (set to either 1.65 V for TRF3703-33 or to 0.75 V for TRF3703-15) → I/Q → I/Q output control → I/Q output atten (adjust to get desired transmit power to either 0 or −5 dBm). See Figure 3. Overview www.ti.com Figure 3. GSM EDGE EVM at 1800 MHz #### **EVALUATION BOARD/KIT IMPORTANT NOTICE** Texas Instruments (TI) provides the enclosed product(s) under the following conditions: This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives. Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. ## **FCC Warning** This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright 2008, Texas Instruments Incorporated #### **EVM WARNINGS AND RESTRICTIONS** It is important to operate this EVM within the input voltage range of 4.5 V to 5.5 V and the output voltage range of 4.5 V to 5.5 V. Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power. Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 85°C. The EVM is designed to operate properly with certain components above 85°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright 2008, Texas Instruments Incorporated #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: #### **Products Amplifiers** amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf | Applications | | |--------------------|---------------------------| | Audio | www.ti.com/audio | | Automotive | www.ti.com/automotive | | Broadband | www.ti.com/broadband | | Digital Control | www.ti.com/digitalcontrol | | Medical | www.ti.com/medical | | Military | www.ti.com/military | | Optical Networking | www.ti.com/opticalnetwork | | Security | www.ti.com/security | | Telephony | www.ti.com/telephony | | Video & Imaging | www.ti.com/video | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated